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Abstract. Mobile ground robots operating on uneven terrain must pre-
dict which areas of the environment they are able to pass in order to plan
feasible paths. We cast traversability estimation as an image classification
problem: we build a convolutional neural network that, given a square
60×60 px image representing the heightmap of a small 1.2×1.2 m patch
of terrain, predicts whether the robot will be able to traverse such patch
from bottom to top. The classifier is trained for a specific robot model,
which may implement any locomotion type (wheeled, tracked, legged,
snake-like), using simulation data on a variety of training terrains; once
trained, the classifier can be quickly applied to patches extracted from
unseen large heightmaps, in multiple orientations, thus building oriented
traversability maps. We quantitatively validate the approach on real-
elevation datasets.

Keywords: image classification, traversability estimation, robotics, con-
volutional neural networks, simulation

1 Introduction

A defining feature of autonomous mobile robots is their ability to plan a path
to reach a given target position. In most indoor scenarios, the environment is
trivially partitioned in traversable areas (clear floor) and obstacles (i.e. walls,
objects, and other areas through which the robot can’t pass); once traversable
and non-traversable areas are known, path planning is solved using well-known
algorithms [1].

In scenarios with uneven terrain, such as outdoors, segmenting the environ-
ment in traversable and non-traversable areas is not as trivial. For example,
some areas may be traversable only in a few specific directions: a wheeled robot
with limited power could be able to descend but not to ascend a steep slope;
a powerful, long and narrow robot with an high centre of mass could be able
to traverse the same environment both uphill and downhill, but may capsize
if traversing perpendicularly to the steepest direction; a bicycle can hop up a
side-walk as long as it is proceeding more or less perpendicular to the step, but



will crash when approaching the step from an oblique angle. Moreover, criteria
for traversability may not be intuitive or easy to model a priori: a legged robot
may be able to negotiate very challenging terrain but get stuck on flat ground
with deep holes of comparable size as its feet ; vacuum cleaner robots get stuck
over power cords laying on the ground; a car with a low clearance may get stuck
on a speed bump.

We consider the problem of estimating where and in which directions a given
3D terrain is locally traversable by a specific ground robot, using a general
approach based on machine learning that applies regardless on the robots lo-
comotion method (wheeled, tracked, legged, snake-like), physical characteristics
(size, motor torque), and low-level controller (anti-skid algorithms for wheeled
robots, foothold selection and gait selection algorithms for legged robots). In
the following we define that a given position of a terrain is locally traversable
in a given direction if the robot, placed in such position and direction, can pro-
ceed straight for at least a short distance when driven by its low-level control
algorithms.

Traversability is only affected by the characteristics of the terrain around
the robot’s position: therefore, for a given robot pose Xrobot with position p
and orientation θ, we consider as input a heightmap patch centred in p and
rotated in such a way that the robot is pointing towards the top of the patch.
This information is a spatial grid of height values, which can be interpreted
as a grayscale image: our task is cast as a binary image classification problem
(with classes traversable vs non-traversable), and solved by training a simple
convolutional neural network.

Training data for the classifier is generated by simulating the robot on many
predetermined training terrains, some of which represent synthetic scenarios
(with a variety of obstacles such as ramps, steps, bumps, with different char-
acteristics) and some of which represent realistic rugged terrains; during such
simulations, the robot is spawned in random positions and orientations, and in-
structed to proceed straight ahead; its progress is monitored and instances for
traversable (where the robot successfully proceeds) and non-traversable (where
the robot can’t proceed) heightmap patches are continuously recorded. Once the
model is learned from such training data, it can be applied densely on any large
unseen heightmap. Because accurate physical simulation is expensive, evaluat-
ing the classifier on many points and orientations of a test terrain is orders of
magnitude faster than simulating the robot on these poses.

This approach only requires that an accurate simulation model for the target
robot is available, and generates an ad-hoc classifier that only applies to such
robot. If the training terrains are sufficiently representative and varied, the re-
sulting classifier captures the specific characteristics of the robot, including the
maximum steepness that can be negotiated and many non-trivial aspects (such
as the risk of getting stuck over bumps).

The main contribution of this paper is this novel approach for traversabil-
ity estimation based on image classification, detailed in Section 3. Experimental



validation and results are described in Section 4. Limitations and extensions of
our approach are discussed in Section 5.

2 Related Work

From the early days of mobile robotics, the task to estimate terrain traversability
has been of central importance. Robotics literature considers traversability to be
an affordance, that is an action that a robot can perform on the environment
[2]. Estimating traversability is a fundamental capability for many animals and
for autonomous mobile robots, because most of their actions depend on their
mobility. In robotics, using a simplified (possibly learned) model to estimate
traversability is a common approach, because modelling the terrain, the robot
and their interaction accurately is difficult and expensive. Several approaches
have been proposed to measure traversability and to gather training data [3]:
For instance, a robot may label a terrain as difficult to traverse when sensing
excessive vibrations [4,5]; human experts can provide clues like preferred paths
in a given terrain that avoid possible non traversable regions [6]; the robot may
learn a traversability classifier on the spot, directly from experience.

The outdoor robotics community has researched traversability estimation
from a variety of sensing sources, such as frontally mounted stereo cameras [7],
thermal cameras used to infer soil density [8], laser scanners [9], and time of
flight cameras [10].

A common approach to estimate traversability consists of two phases. First,
from local sensory data, an elevation map is derived, which is a convenient spatial
representation for ground robots [11]. Then, traversability estimates of parts of
the elevation map are computed from geometrical features like slope, roughness,
and step height using pre-modelled functions specific to the robot’s locomotion
and size [12].

Another major approach relies on the use of visual texture to classify the
terrain type, e.g. discriminating between rock, sand, and grass; then it derives a
traversability score out of the assigned label [4]. Terrain classification is a classical
application for supervised machine learning techniques based on generic visual
features, transformation-invariant descriptors, texture features, or convolutional
neural networks (CNNs) [13,14], which learn to extract problem-specific visual
features. DARPA’s project Learning Applied to Ground Robots project [15] has
advanced learning techniques for terrain traversability classification, including
some applications of deep learning [16,17].

3 Traversability Estimation

Figure 1 illustrates the proposed pipeline for traversability estimation. In the
following sections, we describe how the simulation environment is set-up (Sec-
tion 3.1), detail the process for generating training and evaluation datasets (Sec-
tion 3.2), and finally describe our classification approach (Section 3.3).



Fig. 1. We run simulations with a given robot model on synthetic terrains (left) to
generate datasets linking heightmap patches with their traversability (top right); on
these datasets we train and evaluate classifiers to estimate the probability that a given
heightmap patch is traversable or not

3.1 Traversability from Simulation

We employ the V-REP simulator, which uses the Bullet physics engine [18] for
accurate physical simulation. We simulate a differential-wheeled rear-traction
rover with size 30 × 82 × 27 cm (illustrated in Figure 2) moving forward at
constant velocity on an uneven terrain whose shape is determined by an in-
put heightmap. The robot’s trajectory on the terrain is captured to extract
traversability information.

Fig. 2. Robotic platform (left) and its visual signature over a heightmap patch (60×60
px, approx 1.14 × 1.14 m). The patch is marked as traversable if the robot reaches its
top edge within 1 second.

Heightmaps are grayscale images that represent elevation data from lowest
(black) to highest (white). Figure 3 shows some examples together with 3D
renderings of the respective surfaces. The leftmost heightmap was manually de-
signed to include a variety of obstacles and terrain changes. The rest of the



Fig. 3. Examples of heightmaps for generating traversability datasets. Top row shows
a 2D top-view of the heightmaps in grayscale where white indicates maximum height.
Bottom row shows the corresponding surfaces coloured by height.

heightmaps were randomly generated as a sum of Perlin noise and a curved step
surface1. The size of each generated heightmap is 512 × 512 px that, when sim-
ulated, are scaled to represent surfaces of 10 × 10 m (≈ 1.2 cm/px resolution)
with a maximum height difference of 1m.

Once the simulation is initialized with a surface from a heightmap, the robot
is set to a random pose (position and orientation) on the map and moves forward
at constant velocity without steering. After the robot reaches the edge of the
map or gets stuck for some time, it is re-spawned to a different pose to generate
a new trajectory.

For each trajectory, the robot pose and its corresponding heightmap patch
are extracted at 20 Hz; the heightmap patch associated to a pose is centred on the
robot’s position and oriented in such a way that the robot is facing towards the
top of the patch (see Fig. 2-right). If and only if the distance between the current
pose Xrobot(t) and a future pose Xrobot(t+T ) is greater than a threshold d and
aligned with the robot’s orientation, then the patch is labelled as traversable.

Figure 4 illustrates the traversability labelling for patches along two trajec-
tories in the left-most heightmap of Fig. 3 with T = 1 s and d = 0.3 m. For
the trajectory on the left, the first patches that face the hill-like obstacle at
the centre are labelled as traversable. Thereafter, where the robot slightly slips
along the hillside, the patches are marked as not traversable while the rest of the
trajectory as traversable. In the trajectory on the right, the patches intersecting

1 data and code to reproduce our results are available online: https://github.com/
romarcg/traversability_estimation

https://github.com/romarcg/traversability_estimation
https://github.com/romarcg/traversability_estimation


with the obstacle are clearly identified as not traversable. As the robot keeps
trying moving forward, interaction with the obstacle makes it deviate from its
original orientation towards a traversable set of patches.

Fig. 4. Examples of trajectories extracted from simulation. Yellow arrows indicate
the starting pose and initial direction of the corresponding trajectory. Green patches
represent a positive traversability label while red patches indicate the opposite. The
size of each heightmap is 10 × 10 m. Traversability threshold d = 0.3 m.

3.2 Dataset Generation

From each simulated trajectory (on average 12 s), we sample the robot pose and
the corresponding heightmap patch at 20 Hz. The patch and its traversability
label represents an instance in the dataset.

Three datasets were generated: Dtrain, a training dataset from synthetic data
(40k samples); Deval,syn, an evaluation dataset from synthetic data (10k sam-
ples); and Deval,real, an evaluation dataset from real elevation maps (5 k sam-
ples). The maximum height of the heightmaps is 1 m for Dtrain and Deval,syn; 3
m for Deval,real. All datasets were generated using the robot described in Sec. 3.1,
a patch size of 60 × 60 px, T ≈ 1 s and d = 0.3 m.

Figure 5 illustrates patches extracted along the first part of the leftmost
trajectory of Fig. 4. The values in each patch are offset in such a way that the
centre (i.e. the robot’s position) is mapped to height 0. This makes the patches
independent on their absolute height on the heightmap, a feature that does not
affect traversability.

Dataset Deval,real was generated using an elevation map from a Swiss gravel
pit obtained by a flying drone [19]. The original area of this map is 0.48 km2 ,
with a resolution of 5 cm/px and a maximum height of 50m. We cropped two
regions of this map and scaled them down to form two heightmaps of 10× 10 m



Fig. 5. Examples of labelled patches for the first trajectory in Fig. 4. Border colours
indicate if a patch was labelled as traversable (green) or not (red). The colormap is
used for visualization only, image data is grayscale.

Fig. 6. Surfaces of the two heightmaps from real elevation data. Heightmaps were
extracted from a mapping of a Swiss gravel pit [19].

with a resolution of 1.2 cm/px and a maximum height difference of 3 m. Figure
6 shows a reference image of the gravel pit and the surfaces of the two extracted
heightmaps.

3.3 Training Traversability Classifiers

We cast the problem of estimating terrain traversability as a classification prob-
lem on heightmap data. We compare two alternative approaches: extracting de-
scriptive features from each heightmap patch and then applying standard statis-
tical classification techniques [20], or adopting Convolutional Neural Networks,
a now-standard deep-learning approach [21] which operates directly on the raw
input data. In either case, the output of the classifier indicates whether a patch
is traversable.

For the feature-based approach we wanted to extract from the input
heightmap patch some quantities that are indicative of whether the patch is
traversable or not; such features may be for example the average terrain steep-
ness in the robot’s motion direction (i.e. from the bottom of the patch to the
top), or the maximum height of any steps in patch. Therefore, in our solution,
we compute the Histogram of Gradients (HOG) of the heightmap patch, which
includes these pieces of information; note that the gradient of a heightmap corre-



sponds to the local steepness of the terrain. Computing HOG over 6 orientations,
8× 8 px per cell, and a block of 3× 3 cells, results on a descriptor with 324 fea-
tures that we classify by means of a Random Forest (RF) classifier [22] with 10
trees.

In the CNN-based approach approach, it is expected that the network
autonomously learns meaningful, problem-specific features; because the input
shape is high-dimensional and no prior knowledge of the problem is provided
to the model, this approach requires more training data. Our CNN is built on
the Keras [23] frontend powered by TensorFlow [24], and implements a 60 × 60
px input layer, followed by: a 3 × 3 convolution layer with 5 output maps; a
3 × 3 convolution layer with 5 output maps; a 2 × 2 Max-Pooling layer; a 3 × 3
convolution layer with 5 output maps; a fully connected layer with 128 output
neurons; a fully connected layer with 2 output neurons followed by a softmax
layer (output). All layers implement the ReLU activation function. The network
is trained for 50 epochs to minimize a categorical cross-entropy loss using the
Adadelta optimizer.

4 Experimental Results

In the following, we compare the two classifiers described in Section 3.3 with
a baseline dummy classifier that always returns the class most frequent in the
training set.

4.1 Classification Results

Table 1 summarizes the performance of the three estimators on the two different
evaluation datasets (disjoint from the training set): Deval,syn and Deval,real.

Deval,syn Deval,real

ACC AUC ACC AUC

CNN 0.9134 0.9756 0.7456 0.8729

Feature-based 0.7884 0.9128 0.5940 0.6556

Baseline 0.4956 0.4957 0.5072 0.4974

Table 1. Performance of CNN, feature-based and baseline approaches. Accuracy
(ACC) and area under the ROC curve (AUC) metrics are from a synthetic dataset
generated similarly as the training dataset, and a dataset from the gravel pit described
in Fig. 6.

We observe that the CNN estimator outperforms both the baseline and
feature-based approaches on both evaluation datasets. Performance is lower on
the Deval,real dataset than on Deval,syn, probably because elevation patterns in
the training dataset are more similar to the latter than to the former.



4.2 Traversability Estimation on Real-elevation Datasets

We evaluate our trained classifiers on an additional map. This dataset consists
on a mining quarry (see Fig. 7) of 0.51km2 [19], with some challenging roads
designed for cars and trucks. Because our robot is roughly 4.5 times smaller
than a car, we isotropically downscale the heightmap to match our robot’s size
(Table 2 summarizes the process).

Fig. 7. Heightmap extracted from Sensefly’s mining quarry dataset [19]. Reference top-
view image and perspective view of the elevation map from the extracted red region
are shown at left and right respectively.

Original Cropped and Scaled

area (km2) 0.51 0.9

resolution (cm/px) 9 1.9

max height (m) 165 10

Table 2. Description of the original mining quarry dataset displayed in Fig. 7 and
the scaled version used to evaluate our traversability estimation model.

For this analysis, we fix a direction and iterate over the entire heightmap
extracting patches of 60 × 60px with a stride of 5px. This process is equivalent
as translating the robot’s position over the map while keeping a fixed orienta-
tion. Figure 8 shows the traversability estimation for the mining quarry for four
orientations, indicated by the arrows. Traversability is represented as a coloured
overlay on the surface of the heightmap (traversable is green, not traversable is
red).

We note that the estimator correctly marks the main road (≈1.9 m wide)
as traversable in all directions, and narrow roads as traversable only lengthwise.



Fig. 8. Traversability estimation for the mining quarry elevation map, for four orien-
tations of the robot (arrow).

Slopes are traversable only downhill or, sometimes, transversally. The rough
surface created by the bushes at the top of the elevation map is correctly found
as non-traversable in all directions For all directions, the low-lands and plan
terrain are correctly identified as traversable as it is expected. The traversability
maps can be used by a planner to navigate avoiding non-traversable sections
while moving towards a goal.

5 Discussion, Conclusions and Perspectives

We presented an approach for traversability estimation that casts the problem as
an image classification task. Classifiers trained on simulation data capture com-
plex characteristics of different robot models and quickly estimate traversability
maps on large unseen terrains.

In this work we assumed that the terrain’s 3D shape is the only factor in-
fluencing traversability; in some scenarios other factors may play a role, such as
compactness, friction, and instability. Our framework could handle these factors
provided they can be simulated: for example, if terrains whose 3D shape suggests
a loose gravel surface were simulated with lower friction, the classifier would au-
tomatically learn that steep slopes can’t be negotiated on such surfaces; in this
perspective, one may add additional inputs to the classifier (such as the visual
texture of the terrain) which may help differentiate the actual surface.



Another limitation of the current approach is that it does not capture the
robot dynamics, such as the speed with which the robot approaches an obstacle:
in fact, we limit our attention to slow robots operating on rugged terrains, where
dynamic aspects have negligible impact.

Even though this paper focuses on an external perception of the world (i.e. the
heightmap, which in practical scenarios is acquired by flying robots or derived by
GIS data), the same approach can be used to deal with robot-centric perceptions,
such as robot-mounted LIDAR, laser scanners or even standard cameras. In that
case, however, the robot would only be able to estimate the traversability of the
terrain in its vicinity. This application would be still very important in practice,
and is a future research topic.
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