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A Mathematical Programming Approach to Collaborative Missions
with Heterogeneous Teams

Eduardo Feo Flushing, Luca M. Gambardella, Gianni A. Di Caro

Abstract— We consider the problem of the joint mission
planning in teams of heterogeneous physical agents. The type of
missions that we consider are composed of spatially distributed
tasks that need to be selected and assigned to the agents
for dealing with them. A plan consists of a set of directives
specifying who does what, where, when, and for how long.
The aim is to optimize system-level performance by explicitly
taking into account and exploiting the different sensory-motor
characteristics of the agents. We tackle this general problem
by proposing a mixed integer linear formulation of it which
includes several aspects/constraints that closely model features
and requests of realistic scenarios. We present a solution
approach based on the combination of a metaheuristic and
mathematical programming method that allows to compute
high-quality plans within short time, and with formal guar-
antees on their optimality. The application of the framework is
validated in the context of search and rescue missions.

I. INTRODUCTION

Teams composed by physical agents with different cogni-
tive and sensory-motor skills (e.g., robots, humans, animals)
naturally provide heterogeneity and redundancy of resources,
parallelism, and distributedness. Moreover, they can be de-
signed to produce effective synergies through agent cooper-
ation. All these aspects makes heterogeneous teams highly
suited for a number of important real-world problems, such
as search and rescue, environmental monitoring, surveillance,
and other similar problems which are spatially distributed
and can profit from the presence of a diversity of skills.

In this paper, we study the problem of planning the activ-
ities of such heterogeneous systems. We deal with missions
that are defined by a set of spatially distributed tasks. A
task represents a localized activity: it is directly associated
to a specific location (or portion) of the environment. For
instance, when looking for a missing person in the wilderness
inside a given an area A, a task might consist in searching the
person in a specific portion of A. We assume that the initial
set of tasks is given, together with a finite temporal horizon
for team’s operations. Then, given a team of heterogeneous
agents, the problem consists in selecting which tasks to
perform, assigning them to specific agents within the team,
and appointing the duration and schedule of the services
provided to each one of the selected tasks. The objective is
to optimize team-level performance by explicitly taking into
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account the different agents’ skills, their mutual interactions
and dependencies, and potential synergies.

An important characterization on the type of tasks, is that
we distinguish between atomic and non-atomic tasks. Atomic
tasks are assigned as a whole, meaning that, once allocated,
the effort put into it must be equal to that required for its
completion. Furthermore, only two states can be associated
to these tasks: completed, or not completed. Instead, a non-
atomic task can be carried out in an incremental manner over
disjoint periods of time, and therefore, at any time, these can
be in a partially completed state. Moreover, this state can be
the result from the service provided by an arbitrary number
of agents, each contributing with possibly different levels of
efficiency. Most works in this context are restricted to atomic
tasks (e.g., [1], [2], [3]). Here, we consider more generically
mission plans that can accommodate non-atomic tasks that
can be partially or completely fulfilled through the service
provided by one or more agents during the course of the
mission. Since we are dealing with heterogeneous teams, the
relationship between the allotted effort (i.e., devoted time)
and the amount of service provided to a task by an agent
depends on the matching between the characteristics of the
task and the capabilities of the agent. Addressing these issues
and optimizing this matching are some of the core challenges
that we focus on this work.

We formalize this mission planning problem by means
of a mixed-integer linear programming (MIP) formulation,
The MIP formulation explicitly takes into account the intrin-
sically different skills of the team. It also provides means
for granting robustness against deviations in the agents’
response arising as a consequence of the presence of par-
tially controllable agents, such as dogs, agents that have a
strong autonomy, like humans, or agents that might incur
in sensing/actuation problems, like robots. Moreover, the
formulation comes with a set of modeling tools that enable
the user (the mission controller) to realize specific mission
strategies through the management of the spatio-temporal
interactions and dependencies between the agents.

It is important to remark that the adoption of a linear,
MIP formulation has some important advantages [4]: it can
be solved to optimality with formal guarantees, a using
standard tools they can be solved with any-time properties:
solutions are progressively and monotonically improved over
computation time and can be retrieved with formal error
bounds on optimality. Moreover, the optimal solution is
guaranteed to be found in finite time. However, finding the
optimal solution for large instances, might require significant
computational efforts. We address this issue by adopting a



matheuristic methodology [5] that combines computational
affordability with proven bounds on optimality.

To summarize, the contributions of this paper comprise
the following: (i) a mathematical programming model for
collaborative mission planning using heterogeneous multi-
agent systems that addresses the challenges of heterogeneity,
incorporates mechanisms to manage agents’ mutual interac-
tions and dependencies, and provides an efficient way to deal
with partial controllability of agents in task execution; (ii) an
any-time, effective solution approach that allows to compute
high-quality plans within short time, and with formal guar-
antees; (iii) the application of the proposed framework in the
context of search and rescue missions and the validation of
different aspects in simulation.

II. RELATED WORK

The problem of multi-agent mission planning that we
consider is a combination of task allocation, scheduling, and
routing. Individually, these topics are the subject of a large
amount of research in operations research (OR) and multi-
robot systems. In particular, as vehicle routing and machine
scheduling (in OR) and multi-robot task allocation problems.

In the field of OR, Vehicle Routing Problem with Prof-
its [6], consists in determining an optimal set of time-
constrained routes for multiple vehicles that maximizes the
total collected reward from the visited customer. In the
other hand, machine scheduling problems [7], in a wide
sense, aims at allocating resources (i.e., agents) to a pre-
defined set of time dependent activities (i.e., tasks), while
respecting precedence constraints between the jobs, and with
the objective of minimizing the project make-span. Due to
the integration of planning, task allocation, scheduling, and
routing decisions, and the inclusion of spatio-temporal inter-
dependencies between agents in our formulation, the existing
mathematical models for these problems cannot be directly
applied to the problem we are considering in this work.

In relation to research in robotics, the class of problems
closest to ours is that of multi-robot task allocation (MRTA),
which is the problem of determining which robots should
execute which tasks in order to achieve the overall sys-
tem goals. According to the categorization of Gerkey and
Mataric [8], our planning problem covers both single-task
robots (ST) and multi-task robots (MT), and considers single-
robot tasks (SR), for a time-extended assignment (TA). Most
of the studies on MRTA problems are focused on decentral-
ized solution approaches [4], whose appealing characteristics
(e.g., fault tolerance, resiliency, simplicity) often come at the
cost of lower quality solutions, [4], and rough or non-existent
guarantees about the quality of the solutions provided [9].
Centralized approaches, as the one we propose, on the
other hand, can satisfy the need for optimality, typically
provide solutions of better quality than their decentralized
counterparts, and can also exhibit an anytime property.
These approaches, including ours, are typically grounded on
mathematical programming frameworks, and make use of
exact algorithms such as branch-and-bound [3], and branch-
and-price [1]. However, these previous works have been

limited to domains where tasks can only be assigned as a
whole (i.e., atomic tasks), meaning that the assignment of
a task to an agent is made with the assumption that it will
spend an uninterrupted effort equal to that required for the
completion of the task. This condition precludes (possibly
more efficient) solutions in which tasks may be accomplished
in an incremental manner over disjoint periods of time during
which different agents devoted a certain effort into it, and it
also prevents the partial fulfillment of tasks, a condition that
enables the agents to better distribute their effort over a larger
number of tasks, given time limitations.

Additionally, in our work we consider additional factors
related to dependencies among the schedules of the agents
that can affect the efficiency of mission performance and/or
the feasibility mission plans. These aspects have been re-
cently cataloged as cross-schedule dependencies [1]. but
their treatment have been limited to inter-task dependencies,
such as precedence and synchronization constraints [1], (e.g.,
certain tasks that must be executed simultaneously, or with
relative ordering conditions). In contrast, we consider inter-
agent dependencies, and we introduce a flexible framework
for the definition of directives that can be used to promote
or enforce of spatio-temporal proximity relations among the
trajectories of the agents (i.e., the sequence of locations of
their assigned tasks) as a means of managing the agents’
interactions. Types of constraints that can be expressed
here are, for instance, keeping certain agents close to each
other while they execute their tasks (e.g., for communication
provisioning), or ensuring that some agents remain distant
from each other (e.g, for safety reasons).

Deterministic approaches, like all those described above,
assume that the effect of the actions of the agents is known.
Another class of methods that can be used to tackle MRTA
problems that are subject to uncertainties are stochastic
planning approaches such as Markov Decision Processes
(MDPs) [10]. The application of these methods allows to
directly accommodate uncertain aspects related to the envi-
ronment and to the behavior of the agents, assuming that a
world model is provided. However, the resolution of these
approaches is notoriously difficult, particularly in the case
of multiple agents. Moreover, their increased computational
complexity is not justified in scenarios where the only
sources of uncertainty are the possible deviations in the
execution of plans, such as the ones we are considering.
As an alternative and novel approach, in this work we
propose a simple but yet effective way to define plans that
are robust against bounded deviations in their execution. It
allows to integrate rough estimates about the possible effects
of deviations the agent might incur, without adding further
complexity to the already complex problem.

III. PROBLEM STATEMENT

A team of heterogeneous mobile agents (A) is available
to perform a joint mission in a distributed environment of
a specified dimension. The mission has been decomposed
into a set T of spatially distributed, location-dependent
tasks. The tasks have the general characteristics described in



the Introduction: they can be non-atomic, provide a reward
proportional to the progress achieved in its completion, and
can be eventually brought to an end. Individual tasks are
independent from each other, and the success of the mission
depends on how which tasks are selected and on the quality
each task is performed, as it is explained in the following.

A task corresponds to the execution of a particular action
at a specific location (or portion) of the environment. Let
us assume as given the discretization of the environment
into a finite set of locations £ = {ly,...,l,}, and the
set of possible actions, O = {01, ...,0,}. Then, the set of
tasks composing the mission is 7 C O x L. The complete
execution of each task 7 € T provides an utility, or reward
the task), indicated with R.. The total amount of reward
which is provided by a task depends on how important the
task is for the mission (e.g., in a search and rescue mission,
some locations might be ore important to search accurately
than others based on some a priori knowledge).

Due to team heterogeneity, agents have different capabil-
ities, and not all of them are able to perform all actions in
O. Moreover, the diverse characteristics of the environment
can prevent some agents from reaching certain parts of the
area and/or perform actions in it (e.g., a flying robot alone
cannot enter into a locked room, a dog cannot dive/search
into a lake, a man alone cannot overcome a deep cliff). All
these conditions imply that not all the agents are able to
execute all tasks in 7. Assuming that O% C O denotes the
set of actions that agent k can perform, and Lk C £ denotes
the set of locations that k& can reach, then the set of tasks that
can be feasibly assigned to agent k is 'y = TN (OF x LF),
with (J,c 4 Te = T.

If we look at the tasks as requests to be possibly serviced,
and at the agents as the entities with the capabilities to
service the requests, the “quality” with which a specific
request is serviced depends, first, on the skills of the agents,
and then on the time/effort the agents is spending to provide
the service. Adopting this point of view, we consider the
service time as the measure of effort spent by an agent,
with the increase in the level of completion of a task which
is proportional to the time devoted to it. Since we deal
with heterogeneous teams, different agents may demonstrate
different levels of performance in accomplishing the same
task, due to their potentially different skills in relation to
the specific local characteristics of the task. For instance,
the time effort required for pushing a box across a room is
dependent upon how much force the agent is able to apply
to the box and on well it can detect possible obstacles.

We model the difference in performance among the agents
through the completion rate function ¢ : A x T — R,
which specifies, for each one of the agents, the amount of
effort (measured as service time in seconds) required for
the completion of each task in 7. When an agent k € A
performs a task 7 € T for ¢ seconds, it contributes with
100 - ¢*(7) - t percent of task completion. Thus, the amount

of time needed for agent k to complete a task 7 is ﬁ(ﬂ In

other words, ¢* () represents a linear measure of the efficacy

of agent k for performing task 7. In the following, for the
reason of reducing computational complexity, we assume that
the whole mission time is discretized into mission intervals
of equal length A7 seconds. Consequently, the completion
rate functions are scaled and turned into what we term the
performance functions py,(7), precisely representing efficacy
of agent k € A when executing task 7 € T:
oK (T Ar if T el
or(r) = {O " otherwise M

The completion map Cy, : T — [0, 1] expresses the level
of completion required for each one of the tasks 7 included
in the mission specification 7. For instance, a value of 0
indicates that task 7 has been completed and, therefore, no
further efforts from the agents are required. If an agent
attempts to further deal with the task it will receive no
additional reward, which will amount a waste of time and
resources. A service provided to task 7 that decreases its
required completion C,,(7) of a fraction p (i.e., executing
p - 100 percent of 7). provides a partial utility of pR..

For each agent & € A, we also define a directed
traversability graph Gy = (T'y, Ex) where E} contains an
arc (4, 7) if task j can be scheduled right after task . In the
general case, graph Gy is complete (i.e., Fy = 'y x T'g).
However, specific scenarios may impose constraints over the
sequences of tasks that can be executed. For instance, when
some tasks cannot be designated immediately after others
(e.g., due to mobility constraints), or when specific tasks
must be serviced immediately before servicing others (e.g.,
unblocking a road in order to reach parts of the area).

Based on the above notions and specifications, the Multi-
Agent Mission Planning Problem (MMPP) can be stated as
follows. Given a set of agents, a set of assignable tasks and a
traversability graph for each agent, and a given limited time
budget T, the MMPP consists in determining joint plans for
the activities of the agents in the environment which enable
the timely selection of the tasks to perform, and aiming to
maximize the overall mission utility (i.e., the sum of all
gathered rewards). A solution to the MMPP (i.e., a mission
plan) consists of time-constrained sequences of task, one
for each agent, that can be represented as paths in Gg. In
addition, plans also define how much effort (i.e., devoted
time) each of the selected tasks will receive. Due to time
limitations not all tasks might be performed: a plan implicitly
defines a selection among all tasks in 7.

Figure 1 shows an example plan for three agents. A set of
16 tasks are located in rectangular grid. The traversability
graph allows movements between adjacent tasks in the
Moore neighborhood. Since in this example each task is
associated to a unique location, we denote tasks as Ty,
where 0 < 4, 7 < 4 indicate the column and row of the
location, respectively, of the task in the grid. The top of the
figure shows the performance functions ¢ of each agent. For
instance, the value ¢1(799) = 1 indicates that agent 1 is
able to complete task 7y in a single mission interval, while
©3(700) = § indicates that agent 3 is able to complete one-
fourth of the task in the same amount of time.
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Fig. 1: Example plan for 3 agents. On the top, the perfor-
mance functions ¢y, for each agent. The example shows a
mission plan with 7" = 5. Paths are depicted in the left,
while schedules are depicted as a timeline in the right. On
the bottom, the initial (left), and final (right) coverage maps.

All agents are initially located at the bottom-left cor-
ner, and paths can start from 79 or any of its adja-
cent tasks. The mission plan is defined for a time bud-
get of T = 5 mission intervals and determines the fol-
lowing paths: (700, To1, T11, T21, T30)» (T11, 702, T13; T22, T31),
(710, T21, T32, T33), for agents 1,2,and 3, respectively. The
schedules of all agents allocate one time unit (i.e., mission
interval) for all tasks with the sole exception of 71, which
is assigned to agent 3 for two mission intervals. Initially, all
tasks require full service: C,,(7) = 1, V7. The execution of
the mission plan decreases the level of completion required
of the tasks involved in the plan. For instance, task 7gq is
completed by agent 1, and task 717 is completed after being
serviced by agents 1 and 2. Note that some of the tasks do
not receive any service (e.g., 7p3), while others are completed
(e.g., To0), or partially completed (e.g., T30).

IV. MULTI-AGENT MISSION PLANNING AS A MIP

In this section, we formulate the MMPP as a mathe-
matical optimization problem. We start with a reference
mixed-integer linear program (MIP) model that can be used
to determine plans for each one of the agents with the
aim of maximizing the gathered reward. From this refer-
ence formulation, we incrementally add features as exten-
sions/modifications to the MIP model addressing important
aspects that need to be accounted for in order to be able to
deal with the complexity of the real world. These additional
aspects are included as integral part of the problem, but in a
sense optional from the point of view of the main controller
of the planning system. These include: (i) The grouping of
potentially close tasks together into single planning units,
which allows to define plans in terms of groups of tasks,
(instead of single tasks); (ii) the need to be robust to
potential deviations in the way plans might be actuated by

the agents; (iii) the enforcement or promotion of spatio-
temporal relations and dependencies among agents’ plans to,
e.g., promote synergies or minimize task interference.

The following decision variables are employed to build the
MIP optimization model for the MMPP presented in (2)-(12):
xi;,: binary, equals 1 if agent k traverses arc (i, ) € Ej;
yik: binary, equals 1 if agent k is assigned to task ¢ € I'y;

®..: service provided to task 7 € T by all agents;
t;i: starting time of execution of task ¢ € I';, by agent k;
w;y: time assigned to task ¢ € I'y, for agent k.

maximize Z R, ®, )
TET

subject to

Y wor=1 ke A (3)
(Osj)eEk

Y wiok =1 ke A 4
(4,0)€Ey

Z Tijk = Z ik =yjr k€A jelr (5
(4,7)EEw (j,i)EER

tir +wix —tj < (1 —wiju) T k€A (i,]) € Ey,

i,j #0 (6)

Yik < tik, wip < Tyix ke A, iely (7)

¢, < Z Z or (1) wik TeT ©8)
kEA €Ty i=T

0< @, < Cplr) Te€T (9

P, cR reT (10)

tik, Wik €N ke AieTy, (11)

Tijk, Yjk € {0,1} ke A, i,jeTly (12)

The objective function (2) defines the quality of a mission
plan in terms of its utility, quantifying the expected effect
of agents’ activities over the current state of the completion
map Cp,. A dummy vertex (denoted by 0) represents the
starting point and ending point of the agent paths. To this
end, graphs Gy, are extended with arcs from 0 to each of
the initially accessible tasks and from all elements to the
dummy 0. Constraints (3-4) ensure that paths start and end
at the dummy vertex 0. Path continuity is guaranteed by
constraints (5). Constraints (6) eliminate sub-tours [11] and,
together with (7), they define the bounds of variables ¢
and w. The completion level of each task is bounded by
constraints (8-9) These bounds ensure that a task provides
a maximum reward equal to R,C,,(7), and the utility of a
plan is contributed with R, scaled by the completion of 7
(i.e., ®,). Finally, constraints (10-12) set the real, integer,
and binary requirements on the model variables.

This formulation represents the core of the model which
can be used to maximize the utility of joint agent plans.

A. Addressing heterogeneity with macro-tasks

The first extension to the model considers grouping sub-
sets of tasks into single planning units. The main motivation
of this way of proceeding is to address the issue of having



heterogeneous agents, with different mobility and sensing
and actuation capabilities. In fact, given that the planning
must be carried out over a predefined, task decomposition
(i.e., the set of tasks) and a common mission interval, it might
no be feasible or reasonable to assign a single task for a
mission interval to every agent. For instance, when searching
an area, be the given spatial decomposition equivalent to
cells of size 50x 50 m?, each corresponding to a searching
task. If the mission interval is set to 5 minutes, a human
can be allocated one task per time step, while the same
would not be reasonable for an aerial robot, that in same
amount of time could easily search areas of size 200x 200
m?2, corresponding to 16 tasks

To deal with these issues, we introduce the concept of
macro-tasking: given the initial task decomposition, a pre-
processing is performed to define the set of bundles of tasks
that can be assigned in one planning step to each agent.
Based on the agents’ specific characteristics, these bundles
are potentially different from agent to agent. A bundle is
regarded as a planning unit: the agent autonomously will
decide how to allocate time among the composing tasks, and
in which order they will be serviced. We refer to a bundle
as a macro-task, and the set of all predefined macro-tasks
is denoted by 7™, which is a subset of the power set of
T . Therefore, in our notation, the set of tasks that can be
assigned to agent k € A is still denoted by 'y, but now
includes all macro-tasks that can be assigned to it.

In order to fit the use of macro-tasks into the model, we
require to precisely define their utility, based on the fact that
the time effort must be split among the composing tasks.
Therefore the question is about which fraction of time will
be spent on each task composing a macro-task. We assume
that estimates of the effort distribution schemes within each
macro-task, for each one of the agents, are given and defined
by op : TM x T = [0,1], with 3 ok(w,7) = 1,
Vk € A, w € T, and that, during the execution of macro-
task w by agent k, the agent spends 1000y (w, 7) percent of
the assigned time doing task 7 € w. In the experiments we
adopt a uniform distribution of the effort among all tasks
composing a macro-task: oy (w,7) = (Ar/|wl).

B. Robustness against deviations in execution

In practice, mission plans are computed assuming that
their corresponding nominal performance reflected in execu-
tion. However, when plans are not executed as expected, their
actual performance can experience a significant degradation.

Given that plans are expressed in terms of sequences of
spatial tasks, they also describe trajectories in the environ-
ment, which are expected to be followed by the agents during
the execution of the plans. Yet, in many real-world situations,
agents might deviate from their assigned trajectories. As a
consequence, some tasks, not included in the plan and located
around the specified trajectory, may receive some unplanned
amount of service, while the originally assigned tasks receive
lesser amount of effort than they were suppose to.

In this work we address these issues by anticipating the
effect that deviations could have over mission plans. The goal
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Fig. 2: Providing robustness using macro-tasking: the plan
(left) is enlarged including proximal tasks (right).

is to obtain robust plans that guarantee an optimal use of all
the mission assets even in the case that the execution under-
goes some deviations. The method exploits the flexibility of
the macro-task concept in order to accommodate localized
uncertain movements around the prescribed plans. It consists
in the following preprocessing of tasks.

For any task w € I' that can be subject to deviations
in execution, we enlarge its geographical region in order
to also include proximal tasks. To this end, we define a
mapping between the original task and its geographical
extensions, and we indicate with U(w) an extended macro-
task that corresponds to the original task w plus the proximal
tasks. The rationale behind this way of proceeding consists
in assuming that, with some uniform probability, an agent
deviates from its assigned path and devote some time to
any of these proximal tasks. Therefore, we consider that
deviations in the execution of w translate into a fraction of
time being spent on some of the tasks in U(w) \ {w}.

We assume that an estimate of the probability of deviation
from task w is given, and denoted as p,. Then, in order to
accommodate the estimated effect of deviations, we define
the effort distribution scheme of the corresponding macro-
task U(w) in the following way:

Ja-pw)
o(U(w),7) = {pu/|U(w) \ {w}

Note that planning in terms of macro-tasks U(w) is
equivalent to optimizing mission plans assuming one of the
possible deviation scenarios: the agent deviates from the
original plan and devotes 100 - p,% of the allocated time
to all the extended tasks. Moreover, this amount of time
is distributed uniformly among them. This approach shares
some similarities with Robust Optimization methods [12], in
which uncertainties are also tackled, in a deterministic way,
assuming realizations of the random variables.

Figure 2 illustrates the approach. In this example, a human
agent performs sensing activities (e.g., finding a missing
object), and plans are defined in terms of tasks at one of
the cells. The track specified by a plan is indicated in the
figure on the left. In the figure on the right, the same plan is
now defined in terms of macro-tasks, that extend the original
tasks to cover a cluster of 7 adjacent cells. The nominal
performance of each plan is determined by quantifying the
amount of service provided to each of the involved tasks,
which are highlighted in the figures. As noted, the nominal
performance of the second plan considers possible deviations
from the original track, which may involve the exploration
of cells that do not belong to the original plan.

ifr=w
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C. Proximity constraints between groups of agents

Direct dependencies in space and time among the plans
of individual agents are common in the domains that we are
targeting. For instance, in a search and rescue scenario the
mission commander might request mission plans in which
every agent is always located within the communication
range of a mobile wireless relay unit, to allow a reliable
tracking; or plans that keep air-scent dogs, if used, always
separated from each other by a minimum distance, to avoid
mutual task interference. Both situations represent use cases
of proximity constraints: controlling the minimum and max-
imum distance between groups of agents. To control these
aspects, we introduce a general class of proximity constraints.

Let 914, be the estimated distance, in meters, between
two agents k,l € A carrying out activities at the location of
tasks ¢ € I'y, j € I';. Given two disjoint subset of agents
A, A" c A, we introduce two variables; the minimum
distance between A’ and A" at time ¢ denoted by O, 4.,
and the maximum distance, represented by \I'f4,7 - Let
pe : A — T be the position (i.e., the assigned task) of
an agent at time step ¢ in the current solution. Using this
notation, the model variables for ©f and ¥ are defined as:

bij (14)
Yij (15)

@_tA/_A// = min
k€A’ 1A i=pt(k), j=pt(l)

\Il_tA/_A// = max
k€A’ 1A i=pt(k), j=pt(l)

A proximity constraint consists in establishing a lower or
a upper limit to one of the ©f or ¥! variables for a specific
time step t. We classify, and name, the proximity constraints
according to the effect that can be achieved through their
use. The first type, called coalition constraints, correspond to
those that set upper limits to the maximum distance (¥* <).
Using these constraints, two groups of agents can be kept
close to each other, as forming a temporary coalition. The
network constraints set upper limits to the minimum distance
(©% <). These constraints are typically employed to enhance
and promote communication (i.e., network connectivity [13])
when the possibility of communication between two nodes
is directly related to their physical separation distance. Next,
the interference avoidance constraints, are those that can be
used to keep two groups of agents distant from each other
such as to avoid task interference [14], dangerous situations,
and other undesirable events that are likely to occur when
these agents get closer to each other. These constraints are
defined by setting lower limits to the minimum distance (<
©!). Finally, the sparsity constraints, are those where the
maximum distance must be greater than a certain value (<
Uh). Their effect is the enlarging of the area covered by
members belonging to the corresponding groups.

Due to space limitations, the reader is referred to [15] for
a detailed description of the MIP model.

V. SOLUTION APPROACH

Optimal solutions to the MIP model can be found using
a general, out-of-the-box solver. However, since a MIP
solver does not rely on any domain specific knowledge
about the problem, the progressive improvement over time

of the quality of the best solution available (i.e., incumbent
solution) tends to be slow. To address this issue, and therefore
improve the anytime behavior, we developed a novel problem
solving approach that synergistically combines an exact
mathematical solver and a hybrid metaheuristic algorithm.

A. Hybrid meta-heuristic: GA + ILS

The basis of the heuristic approach is the observation that
the MMPP can be decomposed into two distinct, but inter-
connected problems, namely (i) the selection of sequences
of tasks and (ii) the service scheduling. Accordingly, we
tackle the problem using a two-level decomposition. At the
top level, we explore possible sequences of tasks for each
agent using a genetic algorithm (GA). At the bottom level,
an iterated local search method (ILS) is employed to assess
the utility, in terms of mission performance, of each of the
considered sequences. The integration of ILS into the GA
represents a form of hybridization, therefore we refer to it
as a hybrid meta-heuristic method.

B. Shared Incumbent Environment

A shared incumbent environment (SIE) is a general
methodology to realize collaborative combinations of mathe-
matical programming and metaheuristic approaches [16]. We
implement a SIE as two independent processes, each running
a different solution method (i.e., a MIP solver and the
hybrid metaheuristic) on the same problem instance, and able
to communicate with each other. The cooperation scheme
between both solvers consists in the continuous exchange of
their best found solutions so far. From the MIP solver side,
this corresponds to the best upper bound (also known as the
incumbent solution). In the metaheuristic, it is best individual
that has been evaluated so far. The exchanged information is
then used by the MIP solver to improve its current incumbent
and prune the branch and bound tree, and by the meta-
heuristic to guide the search to more promising regions of
the solution space and to avoid getting stuck in local minima.
As a result, we obtain a solution method that speeds-up the
computation of high-quality mission plans, and at the same
time preserves the anytime property and the formal error
bounds on optimality that a mathematical solver provides.

V1. EVALUATION

In this section we evaluate the proposed mission planning
approach in the context of wilderness search and rescue
scenarios (WiSAR). This application is derived from our
previous works [17], [13]. We consider a single action
to be performed by the agents, that is searching for a
missing target. The set of possible locations at which this
action can be performed is obtained through a cellular grid
decomposition of the area. In line with our mission planning
model, the completion map C,, relates cells to numerical
values representing the amount of coverage required.

The problem instances are based on an area of size 700
x 700 m?2. The area has been decomposed into cells of 100
x 100 m2. We consider three different models of agents,
that correspond to types of agents that are commonly used
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Fig. 3: Comparison of the anytime behavior of the MIP solver
vs. the shared incumbent environment.

in WiSAR missions, namely, (i) aerial robotic platforms,
more specifically quad-rotors, (ii) human rescuers, and (iii)
air-scent dogs. To account for the increased mobility of
aerial robots compared to dogs and humans, we define their
possible sectors of size 200 x 200 m? (i.e., all clusters are
of 2 cells x 2 cells). For human and air-scent dog agents,
the sectors are in one-to-one correspondence with the cells.
For each agent, we defined a search efficacy, that relates its
skills, as well as the effect of local conditions, to the amount
of area covered over time [18]. The search efficacy plays the
role of the completion rate (¢*) in our formulation.

a) Performance of solution approaches: First, we as-
sess the performance of the proposed solution approach. We
computed solutions using only a MIP solver, and using the
SIE approach. As MIP solver we use CPLEX®). In Figure 3,
we show the performance over time of both methods while
solving a problem instance consisting of 12 agents and
a mission time span of 10 time steps. On top, we can
appreciate the progress over the quality of the best current
solutions, in terms of area coverage of the corresponding
mission plans. Below, the optimality gap, that is, the proven
relative gap between the value of the current solution and the
bound on the optimal solution. As noted, the SIE exhibits a
better anytime behavior, and is able to find solutions with
optimality gaps under 10% after a few minutes, while the
MIP solver struggles to achieve similar solution quality.
This indicates that the proposed SIE allows to speed up the
generation of high-quality mission plans.

b) Partial fulfillment of tasks: One of the aspects that
differentiates our planning approach from previous works is
the capability of describing plans in terms of non-atomic
tasks, which accepts the condition of leaving some tasks
partially fulfilled by the end of the planning horizon. We
therefore compare the performance of plans that consider
non-atomic tasks against the performance obtained by plans
that restrict the agents to fully complete the assigned tasks.
The atomicity of tasks is ensured adding the following set
of constraints into the model:

TFyg, <wiy, Yk €A, icTy (16)

where TF is the amount of time that agent k requires to
complete task 7 € I'y. In other words, the previous set of
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Fig. 4: Performance of Non-atomic tasks vs. Atomic tasks.

constraints ensures that, once a task is assigned to an agent,
that agent will bring that task to completion.

In the evaluation, we have considered teams of 6 and 12
agents, with equal number of agents of each type, and a
mission time-span ranging from 7 up to 12 time steps. Figure
4 shows the performance (in terms of area coverage) of plans
computed with the restriction of atomic tasks, and of plans
computed using non-atomic tasks. In all the scenarios the
performance of plans using non-atomic tasks is significantly
higher than the performance of those with atomic tasks. This
suggests that the partial fulfillment condition enables the
agents to better distribute their effort over a larger number
of tasks, and as consequence, achieving higher performance
levels. These results encourage the use of non-atomic tasks
to define mission plans.

¢) Management of agents’ interactions: In the follow-
ing, we illustrate and validate the use of proximity constraints
as a means of managing the agents’ mutual interactions. We
consider a typical issue arising in WiSAR missions involving
the participation of air-scent dogs, namely the problem
of task interference. Task interference is caused when the
presence of other agents affects the behavior of dogs and
deviates their focus, therefore degrading their performance
in the field [14]. In order to prevent this issue, it is of
interest to obtain mission plans that keep dogs separated
from other ground agents, by a predefined minimum distance.
We considered teams composed by 6, and 12 agents, each
with an equal number of human rescuers and air-scent dogs.
We compute mission plans with and without interference
constraints. We consider different values for the minimum
distance required between the agents. Specifically, three
different cases, where the desired minimum distance was set
to 100m, 150m, and 200m, respectively. The constraints were
included in the model as soft constraints, meaning that their
violation was penalized in the objective function.

We simulate the execution of plans using stochastic mo-
bility models derived from our previous work [18], [17],
and measure the distances between the agents during the
mission. Results in Figure 5 show the distances between
each dog and its closest ground agent, averaged over all
the mission (top), and the nominal area coverage provided
by the mission plans (below). We can appreciate that the
use of proximity constraints allows to increase the distance
between dogs and possible interferes, at a small expense in
area coverage. Therefore, these plans will diminish the effect
of interference while still exhibiting good performance.



# Agents = 6

150 =, =
==

100} e - 52

# Agents = 12

200

e e ==

50 e

Distance To
Closest Human/Dog (m)

W \QQG\ »\60‘(\ ’ZQQ‘“ W\° \QQ(“ \‘.)Q«\ 'LQQ‘(\

o o

WO ® ,Lgo“‘ WO ,L@“\
X
(] -
? 50 + \______\
9] _ .
3 2
o
©
Qo
<

Minimum Distance in Proximity Constraint
Fig. 5: Controlling task interference through the use of
proximity constraints.

Normal Robust

(o2}
o

o
o

w
a

=
4 6 8 10 12 4 6 8 10 12
Number of Agents

Fig. 6: Validation of robust mission plans.

Area Coverage (%)

n
o

d) Robustness of plans: Finally, we validate the use
of the robust approach to address deviations in execution of
plans. We compute mission plans using extended sectors that
include adjacent cells and assume that agents deviate to these
cells with probability p,, = 0.4. We take the obtained plans,
in terms of original sectors, and simulated their execution.
We perform 10 simulation runs for each plan and compute
the final state of the coverage map using the agent traces.
Figure 6 shows the final coverages in simulation (boxplot),
together with the nominal coverage of the plans (solid line).
After analyzing the results, we make the following obser-
vations. First, the simulated performance of plans obtained
without robustness considerations is significantly lower than
their nominal coverage . In contrast, this difference is reduced
for the robust plans. The more precise assessment of robust
plans suggests that the proposed method captures indeed the
possible deviations. Secondly, we note that the differences
in execution performance between the normal plans and
their robust counterparts in these particular instances are not
significant. However, the first observation also suggests that
the performance degradation that robust plans might exhibit
in other types of scenarios can be expected to be lower than
the degradation that normal plans might suffer.

VII. CONCLUSIONS AND FUTURE WORK

We presented a mixed integer linear formulation for mis-
sion planning in heterogeneous teams of physical agents. We
targeted missions which can be seen as composed of a set
of spatially distributed tasks. The aim of the mathematical
formulation is to assign plans to the agents by exploiting
their specific characteristics in relation to the tasks, and
promoting their synergies. We included in the formulation a
number of different aspects derived from real-world mission
planning scenarios, which include the ability to enforce
spatio-temporal relations among groups of agents, dealing in

a robust way with the uncertainty in plan execution, letting
open the possibility to complete a task incrementally, by
different agents in different times. As a result the model
is highly realistic and flexible. We also presented a com-
putationally effective solution approach, that preserves some
optimality guarantees while saving computations.

Future work will address the definition of more effective
and fast solution methodologies, and the definition of decen-
tralized strategies, where each agent autonomously computes
its own plan and coordinate with the others.
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