Connectivity-Aware Planning of
Search and Rescue Missions

Eduardo Feo Flushing, Michal Kudelski, Luca M. Gambardella and Gianni A. Di Caro
Dalle Molle Institute for Artificial Intelligence (IDSIA), Lugano, Switzerland
Email: {eduardo,michal,luca,gianni} @idsia.ch

Abstract—In this paper, we deal with the problem of planning
the activities of a team of mobile agents to maximize the perfor-
mance of a mission, and, at the same time, enhancing the commu-
nication between them. We propose a novel approach based upon
the use of connectivity directives, whose compliance is expected to
translate into beneficial conditions for data exchange. Using the
approach in the context of search and rescue missions, we conform
a connectivity-aware planning, in which directives take the form of
spatial relations among groups of agents. In the planning process,
we let the user to establish the desired trade-off between connec-
tivity provisioning and mission performance, which in turn results
in mission plans that exhibit a balance between these two aspects.
The evaluation indicates that, by using the connectivity-aware
planning, we can greatly increase the quality of the communication
at a very low expense of mission performance.

I. INTRODUCTION

Current search and rescue (SAR) missions feature the com-
bined use of technologies (e.g., robots) and human and animal
agents (e.g., dogs) each providing different capabilities and
expertise. In the resulting heterogeneous teams some agents are
more capable to perform certain tasks than others, leading to
the complex problem of assigning roles and responsibilities to
the agents during the mission. Therefore, mission planning for
heterogeneous teams consists in jointly deciding and coordi-
nating the activities of the agents in order to perform the tasks
as efficiently as possible, exploiting at the best their individual
capabilities and their mutual synergies.

The management of SAR missions is typically carried out
at the so-called mission command center, the physical place
that posses the means to receive, collect, process, and analyze
all the information regarding the mission. It also dispatches
the mission plans to the agents in the field and gathers the
necessary personal to exert command and control of all the
activities concerning the mission. Under this operation mode,
a frequent, bidirectional data exchange between the command
center and the agents deployed in the field is crucial for the
proper functioning of the SAR team.

Unfortunately, it is a common situation that a networking
infrastructure is either missing or is only partially operational in
the area where the SAR team is operating in. For instance, this
is often the case for SAR in the wilderness (WiSAR). In these
cases different solutions may be employed to provide support
for communication. In this work we consider the most general
approach to this problem, assuming that communication in the
field is supported by a wireless ad hoc network dynamically
built by the team. In these networks, data can travel across the
network in a multi-hop way, with the possibility of communica-
tion between two nodes being directly related to their physical
separation distance.

Given the criticality of data exchange between the agents
and the command center, as well as among the agents them-
selves, the mission planner faces a problem with two potentially
conflicting objectives. First, since mission-related tasks have to
be carried out at well specified locations in the environment
(e.g., search along a path in the woods), the planner has to
specify actions and trajectories of the agents that would jointly
optimize the search performance. Secondly, in order to enable
the formation of local network topologies that permit the re-
quired flows of information, the planner also needs to address
the notion of spatial proximity among the agents, aiming to sup-
port multi-hop wireless communication. In practice, supporting
wireless networking imposes constraints to the way the agents
can move, constraining in turn how SAR-specific actions are
performed.

The problem of providing ad hoc communication in a team
of agents executing a mission has been addressed in several
different domains such as multi-robot exploration [1], [2], [3],
[4], path planning and navigation [5], [6], [7], [8], [9], [10],
surveillance [11], [12], and pursuit and evasion [13]. A common
way to address the problem is through the dedicated use of a
group of agents as communication providers, whose only objec-
tive is to enable data communication. These approaches include
building and maintaining a communication infrastructure [14],
[15], [16]. However, since the number of agents is limited,
permanently using a fraction of them to keep an infrastructure
intrinsically limits the spatial range of the mission. One way to
extend this range is, for instance, through the use of data mules,
that is agents that constantly move back and forth between the
base station and the rest of the team [17], [2]. The common
implication of all these approaches is that some members of
the team will be given the exclusive task of supporting com-
munication, thus sacrificing for the sake of networking their
potential contribution to the specific mission (e.g., in terms of
performing search). From the point of view of planning, this
way of proceeding considers separately the problems of mission
planning and provisioning of communication.

In another set of works the agents simultaneously play the
role of communication providers and task executors. To this
end, the provisioning of communication and planning of SAR
activities are usually considered as integrated issues. Most of
the approaches in this sense enforce the continual satisfaction
of hard communication constraints (e.g., in terms of proximity
among the agents), that significantly restrict the ways that
the mission can be accomplished. Examples of these include
establishing permanent communication paths between a base
station and a group of agents [11], [5], [18], [19], [8], [1],
ensuring global connectivity among the agents [3], [20], [10],
[4], setting up direct communication links between specific pair



of agents [21], to a minimum number of agents [22], or between
one particular agent and the rest of the team [13].

Enforcing continual connectivity is justified in
communication-critical scenarios where lack of communication
can result in the failure of the mission (e.g., tele-operated
robots, real-time image streaming). Instead, in other scenarios
it can be reasonable to relax the strong requirement of
permanent connectivity, allowing intermittent forms of network
connectivity. Along this line, some works have adopted
flexible connectivity goals such as periodic connectivity [7], in
which the network can be disconnected during bounded, time
periods, regaining connectivity at fixed intervals, and recurrent
connectivity [12], in which the system must regularly become
connected and remain in that state for a minimum amount of
time. In this way, mission requirements for communication
can still be satisfied, while, at the same time, it is possible
to enable the system to reach mission performance levels
that otherwise would be impossible to achieve under strong
connectivity constraints. However, in these works, it is not
clear for the user what is the performance gain (if any) due
to the relaxed connectivity requirements. Moreover, it is not
possible to explicitly control the trade-off between connectivity
provisioning and mission performance.

Unlike prior efforts, we propose a novel way of providing
communication to a team of agents that does not enforce par-
ticular network topologies, restrict the physical locations of the
agents, or consider networking and search as separate problems.
Instead, it promotes the occurrence of spatial relations among
the agents, which are aimed to favor any form of communication
(e.g., multi-hop, opportunistic), through the direct inclusion of
connectivity directives inside the planning process. We let the
user to establish the desired trade-off between communication
provisioning and mission performance, which in turn results in
mission plans that exhibit a balance between those two aspects.

More specifically, the work on network connectivity pre-
sented in this paper extends previous work [23], [24] in which
we formulated the SAR mission planning as an optimization
problem and we focused on SAR in large wilderness areas
(WiSAR). The objective was to jointly define, for all agents in a
heterogeneous SAR team, the search trajectories and the activity
scheduling that maximize the coverage of the area. Trajectories
consist of sequences of sectors, while activity scheduling pro-
vides the amount of time that each agent should spend perform-
ing the search task within each sector composing its trajectory.
We assume that the performance of an agent is characterized
by a linear spatial coverage rate which relates the local terrain
characteristics and the agent skills to the amount of area covered
over time. Under this condition, team mission planning can
be formulated as a mixed-integer linear programming (MILP)
optimization problem.

In summary, our contributions include the following. (i)
A novel methodology to enhance communication in missions
involving a team of networked agents executing spatially dis-
tributed tasks that promotes communication through the specifi-
cation of connectivity directives or guidelines, and also allows to
establish the desired trade-off between communication and mis-
sion performance. (ii) The application of the proposed frame-
work in the context of search and rescue missions, resulting in a
connectivity-aware mission planning. (iii) The evaluation of the
connectivity-aware planning using sets of directives inspired in
typical communication strategies used in SAR missions.

The rest of the paper is organized as follows. In section II we
provide an overview of the SAR planning problem, and discuss
the main aspects of the modeling approach. Next, in section
IIT we formalize the connectivity-aware mission planning as an
MILP optimization problem. In section IV, we present the eval-
uation of the proposed framework using network simulations in
which the mission plans ignoring the communication issues are
compared against plans obtained using the connectivity-aware
approach. Finally, we draw conclusions and discuss future work
in section V.

II. SYSTEM MODEL

In this section we present the way we modeled the reference
WiSAR scenario, which is directly derived from our previous
work [24]. First, in order to effectively evaluate the status of the
search, assign properties to the local environment, and measure
the performance of mission plans, the search area of a WiSAR
mission is discretized into a set of squared environment cells,
representing the smallest spatial elements. In the following,
without losing generality, a uniform cell grid decomposition is
considered, and the cells’ set is indicated by C.

Environment cells serve as a means of evaluating mission
status in terms of coverage. The coverage map C,, : C — [0, 1],
relates cells to numerical values representing the amount of
coverage required, or, in other words, the residual need of
exploration of each cell. For instance, for ¢ € C, a value
Cm(c) = 1indicates that the cell still requires a full exploration
(i.e., full coverage). On the other hand, C,,(¢) = 0 indicates no
interest in exploring the cell, either because it has been already
explored or because the user is certain that the target is not
located there (e.g., because of prior knowledge).

Based on the above cell definitions, the area is further
partitioned in sectors for the purpose of efficient search. In
fact, it should be noted that performing mission planning at
the resolution of individual environment cells may become
both unpractical, given the uncertainties inherent to the WiSAR
missions, and computationally unfeasible, if cells are numerous.
Therefore, the goal of a sector-based search is to serve as a
framework to allocate the effort inside the area, and to enable
the searchers to complete alternating objectives in a reasonable
time. Defining the sector boundaries requires a careful analysis,
and ideally, knowledge of the region. In case of a heterogeneous
team, the definition of possible sectors must be done taking into
account the agents’ capabilities and terrain conditions. Sectors
intended to be searched with ground resources (e.g., a wheeled
robot) may require different boundaries and sizes than sectors
intended to be searched from an aerial point of view (e.g., a
flying robot), in order to account for their different character-
istics of mobility and sensing. In the following, for sake of
simplicity, we assume that the set of sectors is provided as
input to the system, more specifically as a list of geographically
delimited regions (i.e., polygons on the earth’s surface), each of
which can be conveniently described as a cluster of contiguous
environment cells (i.e., a subset of C).

Once the set of sectors has been defined, then the issue
becomes that of allocating the resources inside the sectors and
deciding when, from whom, and how much effort each sector
will receive. This is accomplished by the specification of agent
plans, which are defined in terms of search tasks: dispatching
the agents to sectors with the objective of carrying out explo-
ration activities for a certain amount of time. A global mission



plan consists of sequences of search tasks to be executed one
after the other by each one of the agents. Search tasks are
represented by (L, tstart, tend), Where L C C is a sector, and
tstart and t.,q are the starting and ending times of a search task
inside sector L. For simplicity, and without losing generality,
the whole mission time is discretized into mission intervals of
equal length A; seconds. That is, A, is the common time unit
of the starting, ending, and duration of all search tasks.

In order to compute efficient joint mission plans, the planner
must explicitly take into account the fact that different agents
may show different levels of performance accomplishing the
same task in the same portion of the environment due to their
heterogeneous skills, as well as the effect of local conditions
(e.g., unmanned aerial vehicles operating in densely vegetated
areas may not be able to effectively detect targets on the ground
using vision sensors, humans walking up a steep hill might
move at a considerably slow pace). One way to accomplish this
is to extract relevant environment properties from spatial data
provided by geographical information systems (GIS) and to de-
fine procedures for estimating the expected search performance
(also termed search efficacy in the following), for each single
agent and for each different portion of the environment [23], as
shown in Fig. 1. In the following, we denote the set of agents

Fig. 1: Estimation of agents’ search efficacy using GIS.

as A and we assume that the search efficacy is specified by
the coverage rate, ¢p. When an agent k& € A performs an
exploration task inside cell ¢ € C for ¢ seconds, it provides the
100 - ¢ (¢)t percent of its coverage.

Since mission planning is done in terms of assignments of
sectors to agents, the expected search performance ¢ (L, ¢)
serves as a tool to estimate the coverage that will be done inside
cell ¢ by the activities of agent k inside sector L for one time unit
(i.e., A; seconds). In other words, . provides an estimation of
the way the effort of k£ will be split among cells composing a
sector. For simplicity, and without losing generality, we assume
that the time assigned to a sector is uniformly distributed among
all its composing cells. Forc € C, k € A,and L € T'y:

. At) .
c)| — ifce L
on(L,c) = 4 70 <L| (1)
0 otherwise,

where I, is the set of sectors assignable to agent k € A.

Fig. 2 presents an example of sector decomposition, to-
gether with a definition of . In the figure, the area has been
decomposed into 16 cells, as shown in the square grid at the
top. Two different sector layouts are defined, one for a human
rescuer and the other for an aerial vehicle. The layout on the
right defines 16 sectors of same size as cells, thus a one-to-one
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Fig. 2: Sector layouts for two agents.

correspondence between cells and sectors. On the left, 4 sectors
composed by 4 cells each are defined. The numbers inside the
figure indicate the estimated search performance ¢y (L, ¢) for
agents corresponding to each one of the layouts.

III. MISSION PLANNING AS OPTIMIZATION PROBLEM

We formulate the mission planning as an optimization prob-
lem. The objective is to jointly define, for all agents in the SAR
team, search trajectories and activity scheduling seeking for the
maximal efficiency of the mission performance.

We start by defining for each agent k € A, a traversability
graph Gy, = (T'y, E},) where E}, contains an edge (i, j) if a task
at sector j can be scheduled right after a task at sector 7. We
assume that the traveling times between tasks are negligible, and
can be implicitly taken into account within the time allocated
to perform the tasks. Let Fg C TI'j. be the sectors which are
accessible from the agent’s initial position, and I" denotes the
set of all sectors to which agents can be assigned, I = |J,, ;.

Given a limited time budget T (e.g., mission’s time span),
a plan for an agent k specifies an elementary path py in Gy
(i.e., a sequence of sectors). The path must start with a sector
belonging to I'?, and does not necessarily include all sectors Iy
due to the time constraints. We denote the set of sectors visited
or included in tasks assigned to agent k’s plan as v(py). The
amount of time (expressed in A; units) assigned to each sector
in the plan is represented by the schedule function sj, : I'y, — N,
with s, (v) > 0if v € v(py) and s = 0 otherwise.

The sum of the schedule of each agent must be equal to the
time budget 7', thatis ) si(v) = T. A solution to the mission
planning problem consists of paths py and schedules s, for all
agents k composing the team of rescuers .4, and it is denoted by
P ={<pi,sr > |k € A}

The quality of a mission plan P in terms of area coverage
is determined by the effect of agents activities on the current
status of the coverage map. Given that C, indicates the initial
coverage map, the coverage of a mission plan P is defined as:

o(P) =) P, 2

ceC

where,

®, = min Cgl(c),z Z vr(v,e)sp(v) | . (3

keA vev(py)

In other words, the effect of plan P on the coverage of a cell
c € C (i.e., ®.) ranges from O (i.e., no quantifiable effect) up to
CY (i.e., completely fulfilling the initial coverage requirements
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Fig. 3: Example of mission plan for a team of two agents, one
human rescuer and one aerial vehicle.
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Fig. 4: MILP formulation of the mission planning.

of ¢). The minimization in (3) establishes these bounds. Note
that the coverage of a cell can be affected by the tasks of any
number of agents. Therefore, it is necessary to jointly consider
all agents’ plans when computing ®., as done in (3).

Consider again the example shown in Fig. 2. Let us assume
that the possible transitions between sectors are those indicated
in the figure (i.e., moving through contiguous sectors). An
example of a feasible mission plan for A is illustrated in Fig. 3.

A. Mixed-integer linear formulation

Making use of the notation introduced above, the mission
planning can be formalized as an MILP problem. In order
to simplify the description of the model, we will consider a
dummy vertex (represented by 0) as the starting and ending
points of agents’ paths py. To this end, graphs G, are extended
by adding arcs from 0 to each of the sectors in '} and from all
sectors ', to the dummy 0.

The decision variables of the model are the following:
x5k binary, equals 1 if agent k traverses arc (i,4) € Ex;
yik: binary, equals 1 if agent k visits sector i € T'g;
®..: total coverage provided to cell ¢ € C by all agents;
t;x: arrival time of agent k at location i € I'g;
w;k: time spent by agent k at sector ¢ € ['y.
The MILP formulation for SAR planning is presented in

Fig. 4. Constraints (5-6) ensure that paths start and end at the
dummy vertex 0. Path continuity is guaranteed by constraints

Vij (Wl + ) — i < diy

(7). Constraints (8) eliminate subtours and, together with (9),
they define the bounds of variables ¢ and w. The coverage of
each cell, as explained in (3) is bounded by constraints (10-11).
Finally, constraints (12-13) set the integer and binary require-
ments on the model variables. This formulation represents the
core of the model which can be used to maximize the utility of
joint agent plans (i.e., maximize coverage). Additional details
can be found in [24].

B. Connectivity-Aware Mission Planning

In order to introduce the use of connectivity directives in the
mission planning, we extend the previous model with two types
of directives. The first, called instant connectivity directives,
refer to spatial relations between sets of agents at specific points
in time. The second, recurrent connectivity directives, refer to
conditions over time periods.

Let ¢; be the transmission range of the network. Let 9;; be
the estimated distance, in meters, between sectors 7, j € I
Since sectors are regions within the area of interest, the value
of 1);; may represent, for instance, the distance between their
centroids, or some other notion of expected distance between
agents carrying on activities inside these sectors. In this work,
we adopt the former choice.

Let A, A” C A be two disjoint subsets of agents, and
1 < 7 < T a point in time, hereafter also called a control
point. We represent an instant connectivity directive by a tuple
(A’, A" T), meaning that, at control point 7, all agents in A’
must lie within the transmission range 1, of at least one agent
in A”. We further denote I as the set of the predefined instant
connectivity directives for the current model.

To allow the inclusion of instant connectivity directives
inside the MILP model, we define the following time-indexed
variables, referring to status values at control point 7:

Y7, binary, equals 1 if agent £ is at sector 7 € I'y;
%, distance between agents k and [.
To define the variables y7,., we need to enforce the condition:

e =16 (L <7 <t +wip —1); (14)

which is achieved with the following linear constraints:
(T_T)yz—k+tik§T Vke Ayi €Ty, 7 (15)
T+ TH+1D)y; — T <tix+wi ke Aieclym (16)

oy =1 Vke AT (17)
i€l

Z%‘Tk < Tyix Vke AieTy, (18)
yr € {0,1} Vke Aji €Ty, 7. (19)

Once variables g7, are included in the model, the distance
variable is defined by the following constraints:

Vk,le Aji ey, j el ™ (20)

0 <dj, Vk,le A, . (21)

Given instant directive 5 = (A’, A", 7), we introduce a
binary indication variable ng that takes value 1 if 3 is not
satisfied in the current solution, and O otherwise. By definition,
3 is not satisfied if there exists an agent k € A’ such that no
agent | € A” is within the transmission range . at control



point 7. In terms of model variables, the following relationship
must be enabled:

ng=1e FkeA| VM eA|dy > 1)) (22)
SoVked| Qe |d, <), (23)

Let ©7 4, be the minimum distance between the agents in
A’ and agent k, then (23) can be stated as follows:

n[gzli_‘(VkEA/|62A” Swr) (24)

which needs to be expressed as a set of linear constraints. At
this aim, we first define variables © using the following:

Ofgn=diy — O 4w YeeAjle A", 7 (25
0L <D (1 - é;m,,) Vke Ale A7 (26)

1< > Opan VEeAle A r Q1)
e A"
@;LA// € {0, 1}

0< 674, Vke Ale A”,7 (28)

where D is a large value (e.g., maximum possible distance
between two agents). We make use of two helper variables:
OF1.4 and O, 4./, defined by constraints (25) and (26), respec-
tively. ©F, 4 is a real, positive valued variable representing
the difference between the distance from agent k£ to agent
le A _and the actual minimum distance from % to any agent
in A”. ©7, 4 is a binary indication variable that takes value 1
if the corresponding @;l 4 1s greater than zero, O otherwise.
Constraints (27) ensure that at least one of the (:);l 4~ must be
1, which means that ©F, A Must be equal to one of the distances
71~ Since by definition ©7,; 4., must be greater or equal to zero,
then, as a result, © 4, will be equal to the minimum distance
between k and all agents in A"
Using the previous definitions, we can then restate (24) in a
linear form as:

G;C-A/, S Dnﬂ + ’(/Jr
ng € {0, 1}

v@el ke A (29)
Vel  (30)

Our connectivity-aware planning is further extended with
a powerful class of directives termed recurrent connectivity
directives. These promote the occurrence of an associate set of
instant directives at periodic intervals. A recurrent connectivity
directive is represented by a tuple v = (I’, 7/, ), where I’ C T
is a selected set of instant directives corresponding to control
points within the interval [7/, 7/ 4 8]. A recurrent directive 7 is
obeyed if ar least one of the instant directives I’ is followed.
Similar to instant directives, we introduce a binary indication
variable n. that takes value 1 if < is not satisfied in the
current solution, and 0 otherwise. We denote the set of recurrent
directives by 1. Given the previous definition, variables n., are
included in the model using the following:

Z”ﬁ*|f/|+1§”’y
Ber

VvyeR (3D

ny € {0,1} Vv € R. (32)

Violations of connectivity directives (either instant or recur-
rent ones) are reflected in the objective function as penalty val-
ues. The penalty is proportional to the amount of directives that
are not satisfied in a solution. However, since some directives

@rT=1 b)yr=2 c)7=3 dT=4 e)T=25

Fig. 5: Distances between agents at each time step.

might be more desirable than others (e.g., some of them could
be of critical importance), we also include in our framework a
directive weighting function Q) : I U R — R, which can be used
to indicate the relative weight of the violation of each single
directive with respect to the others.

Before stating the inclusion of the penalty values, we first
normalize the objective function (4) and refer to it as the
coverage component (P .y ):

ECEC @

Poop = A7~
ZCEC an (C)

Finally, violations of connectivity directives € I U R in a
solution are reflected in the connectivity component (®.opnn):

& _ del Q(B)ns + Z'yGR Q(v)ny (34)
o E[je[ Q(ﬁ) + Z’yGR Q(V) '
Note that by definition, 0 < ®.,,, Peopnn < 1.
The connectivity-aware model is defined as:

A®conn) (35)

(33)

maximize (P.oy —
subject to
(5)—(13), (15)—(21) and (25)—(34),

where A is a parameter that sets the trade-off between mission
coverage and the compliance of connectivity directives.

The definition of the set of directives I U R, together
with the parameters ) and A, represent a strategic decision
framework, which may involve the analysis of the particular
problem instance being considered (e.g., characteristics of the
area, composition of the team).

To conclude this section, we present an illustration of the
use of connectivity-aware planning. Let us consider again the
example of Fig. 3. Assuming that each environment cell has size
of 100 x 100 m?, the distances between both agents at each time
step (1 < 7 < 5) are illustrated in Fig. 5. From Fig. 3, we know
that ®.,, = 11176‘5 = (.72. Let us assume that we would like
to promote instant connectivity directives between both agents,
at all time steps, with a transmission range r = 200m. That
is, I = {({human}, {aerial}, 7) |1 < 7 < 5}. In the
example, these directives are violated at 7 = 3 and 7 = 5,
when the distances are 212m, and 255m, respectively. Thus,
the connectivity component becomes P.onp = % = 0.4. This
reduces the quality of the proposed solution to 0.72 — 0.4,
and depending upon the value of the penalty )\, the solution
could no longer be optimal. Preference can therefore be given to
other feasible solutions which might satisfy more connectivity
directives at the expense of only a small reduction in coverage.

IV. EVALUATION

In this section we demonstrate the applicability of the de-
veloped framework through a series of simulation experiments.
In particular, we employ the connectivity-aware planning to
enhance the communication between the team of agents and



a stationary base station (i.e., the command center). We con-
sidered two different set of connectivity directives inspired in
strategies typically employed in other works. The first, which
we refer to as RelayChain, promotes the use of a subset of
agents as communication relays, building a chain connected to
the base station. The second strategy, called DataMules, moti-
vates the use of a subset of agents as data mules, traveling back
and forth between the base station and the other agents of the
team. In this way data mules can carry the data collected from
the agents to the base station. As pointed out in the previous
section, the choice of model parameters corresponding to the
connectivity-aware planning (i.e., set of directives, €2, and \)
represents a strategic decision, over a vast number of different
possible settings. Therefore, the purpose of this evaluation is not
to determine the best setting, but to study the impact of using
of the connectivity-aware planning, and compare it against the
planning carried out ignoring the communication issues (i.e.,
network unconstrained case).

To this end, the experimental evaluation consists of three
steps. First, we compute mission plans for the network uncon-
strained case, and for each one of the strategies. Second, we
use a custom simulator of agent mobility [24], to obtain fine
grained trajectories for all the agents. The simulator receives as
input the mission plans, the GIS data of the area (e.g., elevation
map, vegetation), and agent profiles, that characterize the effect
of the terrain over the movement of the agents. The final step
makes use of these trajectories to evaluate the data delivery
using realistic network simulations.

For the computation of plans we use an off-the-shelf MILP
solver, namely CPLEX(®). We remark that many other solvers or
solution approaches (see, €.g.,[25]) can be used to find feasible
or optimal solutions to the MILP problem. However, we will
like to emphasize that in this paper we do not intend to compare
different solution approaches, but to some extent evaluate the
benefits of using of the connectivity-aware planning, indepen-
dently of the solver used.

To evaluate the network performance, in terms of delivered
data at the command center, we employ an opportunistic delay-
tolerant protocol (DTN) for multi-hop data exchange [26]. The
choice of a DTN protocol is motivated by the fact that standard
data routing protocols require to set up and maintain data routes,
something that is intrinsically difficult to realize in practice
when facing high mobility and/or a cluttered environment,
which are precisely the conditions that are expected in a SAR
scenario. Instead, DTN protocols are able to exploit at most
the transient communication links, and to ensure the function-
ing of the system even with adverse environment conditions
that complicate the wireless transmissions [27]. DTN are also
particularly useful in applications in which a delay-throughput
trade-off is a design choice (i.e., real-time data gathering is not
a requirement), such as the scenarios we are considering.

As network simulation environment, we use the ns-3 net-
work simulator [28] with the following configuration. We sim-
ulated 802.11b Wi-Fi networks with the transmission rate of
2 Mbps. We used a log-distance propagation loss model with
default parameters. The setting of the simulation parameters
corresponds to a transmission range of roughly 200 m. Dur-
ing the course of the simulation, nodes follow the trajectories
previously generated by the agent mobility simulator. Nodes
generate data packets of size 120 kB every 60 seconds. This data
generation simulates scenarios in which agents aggregate the

sensor data (e.g., GPS positions) and send the information back
to the command center. At the network layer, we used the DTN
protocol described in [26], as previously mentioned, which is
publicly available as an ns-3 module.

A. Communication strategies

In order to implement the directives, we included the com-
mand center as an additional agent a.,,, in the set 4. This agent
is initially located at the starting position of the team, and stays
there during the whole mission.

The RelayChain strategy selects a subset of agents (Ar C
AN {acom} ), called relays, to conform a chain, connected to
the command center. Agents Ap are enumerated, and denoted
as ar1,...,0.n. Directives are classified into two groups:
those that promote the formation of the chain, and those that
promote the connectivity between the rest of the team A4 \
(AR U {acom})- The formation of the chain is guided by instant
directives {({ar.1}, {@com }, 7)}, which link the command cen-
ter to the first member of the chain, and {({a,;}, {ari—1},7)}
for 2 < i < mn, that join the remaining elements of Ag.
The connectivity between the rest of the team and the chain
is promoted by directives {({ax}, {acom} U Ag,7)} for a) €
AN\ (Ar U {acom)}- The parameter € specifies a ratio of 3 : 1
between the weights of the directives corresponding to the
formation of the chain, and the latter. This decision is motivated
by the fact that the formation of the chain is the key aspect of
this strategy, and without it, the complete team might become
permanently disconnected from the command center.

To promote the DataMules strategy, we selected a set of
agents A, to become the mules. Their purpose is to travel back
and forth between the rest of agents and the command center.
We specify two sets of directives, to promote the connectivity
between the command center and the mules, and between the
rest of the team and the mules. For the first set, we defined in-
stant directives I1 = {({am },{a@com }, )}, foreach a,, € Ap.
For the second set, Io = {({ax},{acom} U Anr, 7)}, for each
ar, € A\ (Apr U{acom)- For each I; and I, a set of recurrent
connectivity directives is also defined: R; = {(I;,7,0)} for
j = 1,2, and with 6 = 3. The parameter {2 specifies zero weight
(i.e., zero penalty) for the instant directives, and equal weights
among the recurrent directives. This is motivated by the fact that
for this specific strategy we are only interested in the recurrent
achievement of the directives.

B. Scenarios

The scenarios are based on an area of size 700 x 700 m?.
Fig. 6 shows the digital elevation map (DEM) and the distribu-
tion of vegetation of the area. The area has been decomposed
into cells of 100 x 100 m?. We considered three different types
of agents: (i) aerial robotic platforms, more specifically quad-
rotors, (ii) human rescuers, and (iii) air-scent dogs. To account
for the wider mobility of aerial robots compared to dogs and
humans, we define their possible sectors of size 200 x 200
m? (i.e., all clusters are of 2 cells x 2 cells). For human and
air-scent dog agents, the sectors are of same size as the cells.
The traversability graphs allows the movement between sectors
whose centroids are separated by a maximum distance of 290m,
for aerial robots, and 150m for human rescuers and air-scent
dogs. Aerial robots are characterized by their higher speed,
which is not affected by terrain conditions, while their vision
sensors are significantly affected by the amount of land cover
(i.e., vegetation) and by light conditions. On the other hand,
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Fig. 7: Search efﬁcacy as time required to fully cover a cell.

the mobility of human rescuers and air-scent dogs is heavily
affected by the terrain conditions (e.g., slope and ruggedness),
but their capability of sensing is quite robust to the presence of
vegetation. Fig. 7 shows the way the search efficacy was defined
at each cell, for each type of agent.

C. Results

We considered 12 problem scenarios, differentiated by the
starting position of agents and the composition of the team.
Specifically, we positioned the agents at each one of the four
corners of the area, and composed teams with an equal number
of agents for each type (i.e.,2,3,and 4), corresponding to team
sizes of 6, 9, and 12 agents. Plans are computed for a time-
span of 35 minutes, with A; = 300 seconds. When using
the connectivity-aware planning, the aerial robots act as relays
(AR) and as mules (Aj;) in each of the corresponding strate-
gies. A maximum time of one hour was given to the solver to
find the best possible solution. The nature of the solver also
allowed to obtain the optimality gap of the given solution, which
turned out to be 5% on average.

For each instance, we obtained mission plans for the uncon-
strained case and for both the RelayChain and DataMules strate-
gies. When using the connectivity directives, we considered dif-
ferent values for the penalty factor A € {0.25,0.5,1,10, 100},
representing different trade-offs between coverage and compli-
ance of the directives. To analyze the quality of plans in terms
of network performance, we use as metric the network delivery
ratio, that is, the amount of data received at the base station
divided by the total amount of data generated by the agents.
We performed 5 simulation runs to account stochasticity, and
compute the median value of the metric. Fig. 8 and 9 show the
results for coverage and network performance respectively. In
the figures, results for the 12 considered scenarios are organized
column-wise, by increasing team size, and row-wise by the
starting point of the mission. Results indicate that through
the use of the connectivity-aware methodology we can greatly
increase the quality of communication (i.e., the amount of data
received at the base station) at very low expense of mission
performance. We can also appreciate the impact of the increas-
ing A\ parameter over both coverage and network performance.
As expected, the increase of \ generates solutions that obey
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Fig. 8: Coverage performance of computed plans.

a larger number of directives, and therefore provides greater
benefits in terms of communication at some expense of mission
performance. We also note that this situation was not reflected
in a very few instances. We believe that these cases are a conse-
quence of the quality of these particular solutions, which did not
follow the general trend of the experimentation. Additionally, it
can be seen that, in general, the DataMules strategy provides
greater communication enhancement in comparison with the
RelayChain. We speculate that one of the possible reasons
for this difference is the greater flexibility of the DataMules
strategy, which enables the solver to easily find solutions that
implement most of the connectivity directives.

In general, the results demonstrate the potential benefits of
the proposed framework. The flexibility of the approach also
allows to model a vast number of different strategies aiming at
enhancing the communication performance. The two strategies
considered in this evaluation are just a proof-of-concept of the
effectiveness of the use of directives. Although the purpose
of the analysis is not to determine which of both strategies is
better in terms of coverage cost versus network performance,
the results raise interesting issues such as the one of design of
effective strategies that can be represented by a congruent set of
connectivity directives.

V. CONCLUSIONS AND FUTURE WORK

We propose a novel approach to deal with the joint problem
of enhancing the communication and planning the activities of
a team of mobile agents. The methodology introduces the use of
connectivity directives whose (partial) compliance is expected
to translate into beneficial conditions for data exchange.

The applicability of the approach was demonstrated in the
context of wilderness search and rescue missions. To this end,
we proposed the connectivity-aware mission planning, formal-
ized by means of a mixed-integer linear program. We evaluated
the connectivity-aware planning using sets of directives inspired
in typical communication strategies used in these type of mis-
sions. Results indicate that through the use of the connectivity-
aware planning we can greatly increase the quality of the
communication at a very low expense of mission performance.
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Fig. 9: Network performance results after simulations.

The proposed approach can also be used in an iterative
receding-horizon manner [13], where mission planning is car-
ried out over short planning horizons. In this way, the planner
can accommodate the dynamic aspects of search and rescue
missions, such as variations of the agents’ estimated search
performance (e.g., subject to weather conditions), the discovery
of new hints about target location, and unexpected changes in
the composition of the team. Under this scheme, mission plans
are iteratively defined in stages, and new information acquired
is included in the subsequent mission stages.

We believe that the results of the evaluation are promising,
and that the approach can also be applied to other similar
problems. In particular if there exists an implicit trade-off
between communication and performance that is expected to be
controlled. Future work includes a more extensive evaluation
involving many different sets of directives, and over a larger
number of scenarios. We also aim to extend the approach to
cover scenarios where minimum connectivity guarantees are
needed. To this end, the set of directives could be mixed together
with a set of strong connectivity constraints.
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