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ABSTRACT
We propose a model of artificial emotions for adaptation and im-
plicit coordination in multi-robot systems. Artificial emotions play
two roles, which resemble their function in animals and humans:
modulators of individual behavior, and means of communication
for social coordination. Emotions are modeled as compressed rep-
resentations of the internal state, and are subject to a dynamics
depending on internal and external conditions. Being a compressed
representation, they can be efficiently exposed to nearby robots,
allowing to achieve local group-level communication. The model
is instantiated for a navigation task, with the aim of showing how
coordination can effectively emerge by adding artificial emotions
on top of an existing navigation framework. We show the positive
effects of emotion-mediated group behaviors in a few challenging
scenarios that would otherwise require ad hoc strategies: preventing
deadlocks in crowded conditions; enabling efficient navigation of
agents with time-critical tasks; assisting robots with faulty sensors.
Two performance measures, throughput and number of collisions,
are used to quantify the contribution of emotions for modulation
and coordination.
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1 INTRODUCTION
In animals, emotions play a dual role: they act as internal modula-
tors of behavior and as mediators of social interaction. The former
role is exemplified by an animal’s increased responsiveness to exter-
nal stimuli when experiencing fear. The latter role is made possible
by the fact that the animal exposes its emotional state (e.g., by chang-
ing body posture), thus implementing a simple yet immediate form
of communication, resulting in a social modulation effect.

We present a general, high-level robot control architecture that
proposes similar mechanisms, encompassing artificial emotion gen-
eration and dynamics, behavior modulation, and emotion-based infor-
mation sharing. Artificial emotions are used to represent a robot’s
internal state in a compressed yet informative form. The internal
emotional state modulates the robot’s behavior and, at the same
time, can be effectively exposed to other members of the system
with very low bandwidth requirements, resulting in system-level
modulation and social coordination.

Many previous works on affective computing [30] have devel-
oped computational emotion models [15, 26], often with explicit
biological inspiration [21, 32, 34]. Different roles of emotions for
multi-agent andmulti-robot [12, 31] systems have been investigated
in detail, namely: behavior modulation [7, 19, 20]; emotion-based in-
formation sharing [2, 10, 36]; compressed state representation [18].

Up to our knowledge, our work is the first which encompasses
the different roles and functions that can be related to emotions into
a unified, coherent, high-level architecture. We exploit the general
notion of artificial emotions to obtain, at the same time, adaptive
behaviors for the single robots and the emergence of coordinated
behaviors at the system-level. In general, to obtain such results,
either ad hoc tuning of robots’ and system’s parameters are required,
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and/or potentially complex and bandwidth-consuming techniques
for information sharing and coordination are needed.

In short, we aim to improve the performance of a multi-robot
system by providing it with intrinsic adaptivity and emerging co-
ordination. Emotion modeling is a good candidate to achieve this
goal: after all, animal emotions exist because they have a positive
impact on the species, i.e., they allow individuals and communi-
ties to perform and adapt better. A similar motivation is shared
by several related works [3, 23, 33], which also experimentally
demonstrate beneficial effects of artificial emotions. In particular,
emotion-modulated social interaction has been used in multi-agent
systems to avoid deadlock-like situations without centralized plan-
ning [28], and to improve group performance in a task-sharing
scenario [3]. The specific emotion of fear, as a natural reaction to a
situation perceived as potentially harmful, was investigated in [6]
as a behavior modulator learned by a robot through interactions in
the real world.

Note that a related research direction uses artificial emotions
to specifically facilitate interaction with humans [1, 5, 9], also in
the context of multi-robot systems [17, 35]. Our work presents a
general architecture and does not explicitly pursue this specific
goal. However, as we discuss in Section 2.5, in principle robots can
expose their artificial emotions also to neighboring humans, and
vice versa, which makes the framework rather general.

To illustrate the use of the model in a practical scenario of inter-
est, we instantiate it for representing and using artificial emotions
in the context of multi-robot navigation and collision avoidance. We
consider a, potentially dense, multi-robot system where each robot
moves independently. In order to obtain effective mobility patterns
at the system level (i.e., reduced collisions, fluid motion), robots
need to mutually adapt their mobility and implement some form of
coordination. Instead of handcrafting task-specific adaptation and
coordination schemes, we show that we can achieve these goals
using rather generic artificial emotions. To this aim, we define, and
include in the general architecture, a set of artificial emotions that
are significant for the problem scenario. We also define quantita-
tive performance measures, which we compute for three settings:
without emotions; with emotion-based behavior modulation; with
emotion-based behavior modulation and information sharing. The
results show an advantage of using our emotion-based architec-
ture to achieve effective coordination, without the need for ad hoc
tuning of parameters nor defining handcrafted behaviors.

We remark that the use of the navigation scenario is purely
for illustration purposes. A number of related works exist in this
respect, that however set more specific and limited goals than our
framework. A research direction, which is close to ours in this
context, regards the use of static personality traits that parametrize
navigation behaviors [13] as a space where to search for optimal
strategies in heterogeneous swarms [11], whereas we make use of
more general dynamic emotions.

Our main contribution is the high-level architecture for robot
control based on artificial emotions and its formalization in terms
of emotions representation and dynamics, behavior modulation,
and information sharing for coordination, which is described in
Section 2; Section 3 presents the application to multi-robot navi-
gation; Section 4 describes our setup for validation and Section 5
reports quantitative results. Section 6 concludes the paper.

2 ARTIFICIAL EMOTIONS MODEL AND
ARCHITECTURE

In this Section, we first introduce basic definitions and ideas be-
hind our modeling approach for implementing and using artificial
emotions (Sections 2.1 and 2.2). Then we describe: the dynamics
regulating emotional changes (Section 2.3); how an emotional state
determines behavior modulation (Section 2.4); and, finally, how
emotion-based information sharing is performed to obtain system-
level coordination (Section 2.5). Figure 1 illustrates the architecture
encompassing all these aspects.

2.1 Internal state
We consider a robotic agent that, at time t , is engaged in some task
T (e.g., assigned by an external operator) and is part of a (potentially
heterogeneous) group of cooperative robotic agents. An agent is
characterized by: a set of abilities A, a personality P , and a time-
dependent energy level L(t ). The abilities are defined as the (fixed)
set of sensory-motor capabilities of the robot, which are used to
realize the current behavior, as selected according to some decisional
policy. The personality is defined as the collection of fixed (or
slowing changing) parameters that affect the way abilities are used
to realize behaviors.

By using its abilities to sense the external environment and
neighboring agents, the robot acquires at time t some information
that we denote as x (t ) = (x1,x2, ...,xM ) ∈ RM . Assuming an inter-
mediate cognitive layer that processes the raw measures gathered
through the sensory apparatus of the robot, the information in x ,
complemented by the internal data (A,T ,L), is used to update the
internal state µ of the robot. This is parametrized by means of a
collection ofmicro-states µ(t ) = (µ1,µ2, ...,µN ) ∈ RN . Micro-states
are features that are relevant to represent the current situation of
the environment (including other robots’ status) and of the robot
itself for the given task. Each µn is a real-valued variable quanti-
fying the level of activation of the corresponding n-th micro-state.
Clearly, the precise definition of the micro-states is task and robot
dependent. For instance, for a navigation task, relevant features to
account for might include usual features such as the robot’s velocity,
presence of obstacles, patterns of nearby robots, energy levels, as
well as higher level notions, such as how predictable the motion of
a neighbor robot is, and so on. For a collective transportation task,
relevant features might be quite different. In any case, the precise
definition of micro-states that are accessible through sensors and
are useful for the purpose of taking high-level control decisions is
expected to be rather straightforward.

The current internal state µ affects the emotional state as de-
scribed in the next Section. In turn, the emotional state modifies
the behavior generation for the current task T , and is, at the same
time, communicated to other robots, thus promoting swarm-level
coordination as discussed in Section 2.5.

2.2 Emotions
The use of the termmicro-states is loosely borrowed from statistical
mechanics, intending that different combinations of values for the
features give expression to different affective macro-states, and mul-
tiple combinations of values can be associated to the same macro-
state. More precisely, we define as ε (t ) = (ε1,ε2, ...,εK ) ∈ [0,1]K
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Figure 1: Information flow in the proposed modular architecture based on the use of affective states: exploded view for Robot
1 and summarized view for Robot 2. The central part illustrates the emotion dynamics of Robot 1, where affective macro-state
ε depends on input observations from the environment x , task T , personality P , abilities A, energy level L, and the emotional
state of neighboring robots (red box). The current active emotion e (linked to the largest component of ε) of each robot can be
exposed through a very low-bandwidth link (like an RGB LED) and shared with humans.

the affective macro-states that result from the compression of the
internal micro-states µ(t ) by a time independent surjective function
ν : RN ↠ [0,1]K .

Affective macro-states should: (1) be part of a universally shared
vocabulary (e.g., every human has an idea of what fear is and how it
affects behaviors); (2) be relevant to the task and the characteristics
of the robot; (3) be a compact representation (compression) of the
internal state, i.e., K ≪ N .

In this context, we define emotions as labels of affective macro-
states. Namely, the affective macro-state εk ∈ [0,1] is interpreted
as the activation at time t of the k-th emotion ek belonging to the
set E = {e1, . . . ,eK }.

For example, given a collection of micro-states that describe “how
well a sensor is working”, “how often the robot’s goal is changing”,
“how predictable a neighbor is”, “how coherent the environment’s
representation is”, . . . , the affective macro-state confusion-level ag-
gregates this information and describes how high the activation of
the emotion confusion is. In Section 3, we extend this example to a
set of emotions that arises in a navigation scenario.

At any time, all emotions in E contribute to modulate the agent’s
behavior (see Section 2.4). Nonetheless, the macro-state that pre-
dominantly affects a robot at time t has a particular importance
and is used to define the robot’s active emotion as

e (t ) � argmax
ek ∈E

εk (t ). (1)

The active emotion is the one piece of information that describes
the agent’s state best and that should be shared with neighbors (see
Section 2.5). The adopted winner-takes-all strategy, other than find-
ing some ground in the biological processes describing emotions’
dynamics, brings an intrinsic robustness for parameter setting, since
it’s only the most prominent emotion that matters, rather than the
precise relative weights between all the different emotions.

To make the overall response even more robust and avoid oscilla-
tions, we use a hysteresis mechanism with two dynamically defined
thresholds ϵlow < ϵhigh: the robot keeps its currently-active emo-
tion until its activation decreases under ϵlow or another emotion’s
level rises above ϵhigh.

2.3 Emotion dynamics
In humans, affective activations are temporally modulated [25],
with psychologists distinguishing between sentiments (long lived),
moods (medium lived), and emotions (short lived). Typical duration
of emotions ranges from seconds up to minutes. We assume that
emotion activations follow a form of stimulus-response dynamic1

d

dt
ε (t ) =

ν (µ(t )) − ε (t )

τ
, (2)

where τ is the typical emotion life-time once the stimulus that
caused the emotion is removed.

We generalize Eq. (2) to allow for an internal emotional dynamics
ζ that stimulates the activation of an emotion from (other) emotions’
activations too and is parametrized by the robot personality P :

d

dt
ε (t ) =

ζ (ν (µ(t )) ,ε (t ); P ) − ε (t )
τ

. (3)

For example, a robot that is experiencing confusion (e.g., be-
cause of too many other robots erratically moving around) while
executing its task, and has a personality P1 — that results into an
impulsive, quick-tempered emotion dynamics — would quickly be-
come frustrated because unable to address the cause of confusion.
In turn, the frustration affective state will induce an appropriate
behavior modulation, that will hopefully facilitate the solution of
the problem (e.g., decrease speed to avoid collisions with those
robots). Instead, a robot with a different personality P2 that is more
resilient to changes, would not activate frustration and would re-
spond differently to confusion.

2.3.1 Linear model for emotion dynamics. In the following, we
present a linear model for emotion dynamics based on Eq. (3) that
is parametrized by personality factors, which we consider as stable
characteristics of the agents.

Although psychologists disagree on the best way to concep-
tualize individual personality differences, considerable evidence
supports the Five Factor Model (FFM) [8], which we therefore use

1This is compatible with the concept of priming in psychology literature, i.e., how past
stimuli influence the present behavior [29].
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as an inspiration model. The FFM characterizes individual differ-
ences in terms of five personality factors P∗ ∈ [0,1]: openness Pope,
conscientiousness Pcon, extraversion Pext, agreeableness Pagr, and
neuroticism Pneu.

We assume a linear mapping ν between micro- and macro-states.
Let Σ↑k ,Σ

↓

k ⊆ {1,2, . . . ,N } be the disjoints subsets of micro-states
that influence positively (↑) or negatively (↓) the k-th macro-state.
We define each mapping νk as a weighted sum over Σ↑k and Σ↓k

νk (µ) �
∑
i ∈Σ↑k

µi
λik
+

∑
i ∈Σ↓k

(
1 −

µi
λik

)
, (4)

where λik defines a normalization factor and corresponds to the
value of the i-th internal state that stimulates a large activation of
the k-th emotion. Besides the sensorial stimuli x , which are taken
into account by µ = µ(x ), the affective macro-state has its own
dynamics ρ, where different emotions influence each other. This is
modeled2 through a linear relation defined by a square matrix (ξi j )

of dimension K2: ρk (ε ) �
∑K
i=1 ξikεi . The overall dynamics of the

emotional activations results from the definition of ζ in Eq. (3) as the
saturation over [0,1], through an activation function ϕ : R→ [0,1],
of the weighted sum of two contributions:

d

dt
εk (t ) =

ϕ (γk1 (γk2νk (µ(t )) + γk3ρk (ε (t )))) − εk (t )

τk
. (5)

This sort of non-linear saturation is similar to psycho-physiological
dynamics of human emotions [22].

Regarding the FFMmodel, we note that neuroticism stands for the
sensitivity to input observations:γk2 ∝ Pneu,τk ∝ 1/Pneu. Similarly,
openness (or spontaneousness) makes a robot more willful to transit
through emotions: γk3 ∝ Pope. All the personality traits contribute
to defining the saturation level γk1 = γk1 (P ).

2.4 Behavior modulation
In the following, we describe the behavior update process, depicted
in the right part of Figure 1.

We assume that the robot is providedwith a set ofQ predefined be-
haviors {b1, . . . ,bQ }. At time t , each behaviorbi can be activated and
tuned by adjusting Ri parameters θ (bi ; t ) =

(
θi0,θi1, . . . ,θiRi

)
∈

[0,1]Ri , where the first parameter signals the behavior’s activation,
i.e., θi0 = 1 if bi is active and θi0 = 0 otherwise. At each control
step, the robot uses the compressed information about its internal
state (provided by the affective macro-state defined in Section 2.2),
as well as information about its task, its abilities, energy level and
personality, in order to select the set of active behaviors and set
their parameters θ through a behavior modulation function B

θ (b; t ) = B (b,ε (t ),P ,A,T ,L(t )), ∀b ∈ {b1, . . . ,bQ }. (6)

Let us consider again the previous example, in which a robot
was increasing its confusion-level. This would yield a number of
behavior modulations, such as: decrease moving speed to avoid
collisions; activate an help-seeking behavior to lower the reliance
on its sensors; increase the number of raw data samples that are
filtered to update µ. An extended example of behavior modulation
in the context of multi-agent navigation is presented in Section 3.

2A concrete example of internal emotion dynamics and matrix ξ can be found in [24].

2.5 Emotion sharing for coordination
So far, we have considered behavior modulation for a single robot,
but we are also interested in using artificial emotions to have emerg-
ing coordination in a multi-robot system, possibly with a minimal
overhead. To this aim, information sharing is a key factor; but, which
information should a robot share with neighbors? We maintain that
a minimal yet effective approach is to expose information about
the robot’s active emotion e (t ) and the related activation εe (t ) (t ).

This information can be interpreted as an extremely compressed,
but very meaningful, representation of the robot’s internal state:
it encodes important clues about the robot’s next actions, its sur-
roundings, and its reactions to environmental changes. To improve
its predictability, the robot should complement affective informa-
tion with data that helps neighbors to interpret it, like personality
P , abilities A, task T and energy level L.

Therefore, the robot publishes, at the end of a control step at
time t , the message

I (t ) � (e (t ),εe (t ) (t ),P ,A,T ,L(t )), (7)

which represents another instance of the modulation mechanism
described in Section 2.4 and defined by Eq. (6).

After an agent receives such message from a neighbor, it adds
its content to its own internal state µ. This, in turn, closes the loop
by modifying the recipient’s affective macro-states, active emotion,
and communication content. This yields an automatically-regulated
shared social emotional state that, when correctly designed, can
increase the performance of the system as a whole.

Neighbors’ emotions provide a compact information content
that is relevant to the task, the robot’s abilities and the environ-
mental status. They integrate the robot’s own sensing information
with data that is pre-filtered within the neighborhood. Ultimately,
this enables a better predictability of the neighbors’ behavior and
promotes the emergence of coordination within the system.

Note that these same mechanisms can be used to let social coor-
dination emerging in human multi-robot systems. On the one hand,
humans share their emotions through nonverbal communication
(e.g., facial expressions). If a robot is able to detect the emotion of a
human neighbor, it can use this information just like the informa-
tion received by neighboring robotic agents. On the other hand, if
robots explicitly share their emotional status (e.g., by modulating
their appearance through colored lighting), interacting humans can
learn to interpret this appearance as an emotion, and better relate
to the robots’ behavior by means of empathy.

3 EXAMPLE: ARTIFICIAL EMOTIONS IN
MULTI-ROBOT NAVIGATION

In this Section, we instantiate the proposed framework in the con-
text of multi-robot navigation (see Figure 2) to provide an illustrative
example of the relation between emotions, behavior modulation and
local communication. We will then apply this model in simulation
(Section 4) and report experimental results (Section 5). Although
the navigation task by itself has no emotional content, we will show
that introducing the emotions summarized in Table 1, has a positive
impact on performance.

Three challenging situations are considered.
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Figure 2: Multi-robot navigation scenarios: (left) CIRCLE
scenario where the robots start on a circle and navigate
to reach the diametrically opposite end; (right) CROSS sce-
nario where robots navigate back-and-forth between oppo-
site corners of a square.

Preventing and escaping deadlocks in crowds Reactive local nav-
igation algorithms lack the planning and explicit coordina-
tion ability to handle very crowded (and/or cramped) envi-
ronments with robots navigating to different targets; then,
deadlocks may form, in which robots cluster are unable to
proceed or escape.

Enabling effective activity of agents with critical tasks In a het-
erogeneous swarm, different agents sharing the same space
may work on different tasks, some of which could be more
time-critical than others; the swarm’s behavior should ac-
count for this difference.

Assisting robots with sensing issues Sensing is a critical task
for mobile robots; if a robot has a sensing malfunction, it
may be assisted by a functioning robot which is heading to
the same target and shares its sensing information.

The mappings ν and B between the agent’s internal state, emo-
tion activations, and behaviors are derived from few, legible, bio-
inspired rules and common sense. For example, we impose that
fearful agents should be more careful and slow down.

In the remainder of this section, we: describe the representation
of the agent’s internal state (Section 3.1); implement an instance of
the linear dynamic model described by Eq. (5) (Section 3.2); present
the agent’s behaviors (Section 3.3) and their modulation through
linear functions (Section 3.4). The whole model is formalized in
detail in the Appendix provided as supplementary material.

3.1 Internal State
The relevant part of the agent’s internal state µ ∈ R5 is given by:

µeff (efficacy) ratio of speed towards target to optimal speed,
µfs (free space) ratio of free space around the agent to agent’s

horizon,
µnf (nearby frustration) fraction of neighbors in frustration,
µtd (task delay) relative duration of the travel towards the target

with respect to the expected duration,
µrot (extra rotations) how much the agent has to rotate to reach

the desired direction.

3.2 Emotion dynamics
The emotions’ activation functions νe : R5 → [0,1], for any e ∈
E = {fear, frustation,urgency,confusion}, are defined as following.

Table 1: Summary of emotions, micro-states that influ-
ence emotions dynamics, and (↑positive, ↓negative) behavior
modulations in the context of multi-agent navigation.

Emotion Stimuli (Section 3.2) Behavior modulation (Section 3.3)
Robot a Neighbors

neutral selected when no other emotion
above threshold

default behavior
and parameters

fear lack of free space, ↑ ψ , ↓ vopt
many frustrated neighbors

frustration slow progress to target ↑ triggerbescape

urgency expected arrival close to deadline ↓ m∗, η,ψ ↑ ma
confusion too many changes of direction ↓ vopt ↑ ma

↑ triggerbhelp

Fear. Fear (of an incoming deadlock) increases when an agent is
closely surrounded by other agents, and when the majority of the
neighboring agents expose frustration:

νfear (µ) =
µnf
λnf
+

(
1 −

µfs
λfs

)
. (8)

Frustration. Agents get frustrated when they don’t manage to
advance quickly enough towards the target:

νfrustration (µ) = 1 −
µeff
λeff
. (9)

Urgency. Agents continuously monitor their progress towards
the goal; when an agent detects slow progress compared to the time
requirements of its task, urgency increases:

νurgency (µ) =
µtd
λtd
. (10)

Confusion. When an agent notices to be following an unneces-
sarily complicated path to reach its target, confusion is increased
because a sensing malfunction is suspected:3

νconfusion (µ) =
µrot
λrot
. (11)

Finally, we complete our example as a model
d

dt
εk (t ) =

ϕ (γk (P )νk (µ(t ))) − εk (t )

τk
(12)

that ignores internal emotion dynamics (ρk ≡ 0 in Eq. (5)) and
uses an activation function ϕ (x ) = x |10, where we use the following
notation for clamping x ∈ R in [a,b] ⊂ R:

x |ba �



a if x ≤ a
x if a < x < b
b if x ≥ b

. (13)

In our example, personality P only affects urgency: agents with
prioritized tasks have γurgency = 100, while all other agents have
γurgency = 1/4; all others γk are set to one.

3.3 Behaviors
In our context, agents solve challenging navigation problems in
crowded environments, where they need to reach one or more
targets while avoiding other robots (see Figure 2). The primary
3This mechanism is related to motion sickness in humans, which is caused by conflict-
ing visual and balance perceptions. Nausea and vomiting occur as a countermeasure
of a suspected poisoning, which could be the root cause of such sensory issues.
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Figure 3: MarXbot robot and modulated parameters.

behavior is, therefore, a navigation behavior bnav. Additionally,
robots implement other two behaviors:

(1) bescape is a behavior, alternative to bnav, under which the
target is temporarily ignored, and the robot only attempts
to move towards the direction which allows for the longest
free path. This behavior is triggered by agents with large
frustration and contributes to avoid extreme crowding.

(2) bhelp is a behavior, parallel bnav and bescape, under which
a robot publishes its sensing information for others to use.
Confused agents can exploit this information to safely navi-
gate towards their target.

Many algorithms have been proposed for local navigation of
robots while avoiding collisions with obstacles, other robots, or
humans. We build bnav upon the recently-proposed human-like
heuristic [27] for robot navigation [14], which is based on a sim-
ple mechanism defined by the following few behavior parameters
(Figure 3), which, in this work, we modulate through emotions:
Field of viewψ , is the width of the sensing cone within which a

robot can perceive (with some uncertainty) non-occluded ob-
stacles. The maximum value is dictated by robot hardware;
it can be artificially decreased to obtain a less accommo-
dating, more self-centered behavior where a robot tends to
follow straighter paths and disregard neighbors which are
not directly in front of him.

Optimal speed vopt, is the normal moving speed that a robot
keeps when there are no obstacles in the vicinity. Slow speed
enables easier maneuvering in tight areas; moreover, when
a slow robot frequently changes its direction, others will
require fewer adjustments to their own trajectories.

Social marginma w.r.t. agent a. Robots plan their paths in order
to keep a minimal distance from neighbors that is larger than
the minimum safe distance. A reduced social margin leads
to straighter paths and reduces the tendency to navigate
around others, thus forcing them to deviate more from their
path. A robot using a larger social margin tends to follow
longer (thus less efficient) paths but is less affected by the un-
expected motion of neighbors because of a larger headroom
to smoothly navigate around them.

Caution (η), when confronted with an obstacle at a given distance,
robots do not immediately stop; instead, they smoothly mod-
ulate their speed following the same rules observed in pedes-
trians and drivers [16]. In particular, the predicted time-to-
collision with the obstacle should not exceed a given fixed
time η. A large η results in a very cautious behavior in which

robots tend to “brake early”; while robots with small η tend
to brake at the last moment.

3.4 Behavior modulation
The behavior parameters are dynamically modulated by affective
macro-states, and emotions trigger different behaviors in order to
deal with specific issues; the model is summarized in Table 1.

η = η0
(
1 − 4εurgency

) ���η0ηmin
(14)

ψ = ψ0 + (ψmin −ψ0)εurgency + (ψmax −ψ0)εfear (15)

vopt = v0 (1 − εfear − εconfusion) |
v0
vmin (16)

ma = ra + (m0 − ra )
(
1 − εurgency

)
+




mconf if et (a) = confusion
murg if et (a) = urgency
0 otherwise

(17)

θ escape0 = 1 − θ nav0 =

{
1 if et = frustration
0 otherwise (18)

θ help0 =

{
1 if et (a) = confusion for a neighbor a
0 otherwise (19)

Fear. Fearful agentsmove slowly [Eq. (16)], and carefullymonitor
their environment using the largest field of view allowed by their
sensors [Eq. (15)].

Frustration. Frustration triggers the escape behavior: frustrated
agents move in a free direction, until frustration decreases and bnav
is resumed [Eq. (18)].

Urgency. Agents that feel urgency reduce their field of view
[Eq. (15)]; therefore they tend to follow straighter paths because
they ignore robots at the periphery of their sensing cone; similarly,
they disregard the social margin around other agents [Eq. (17)]
and reduce their caution [Eq. (14)], which results in faster (but
less respectful) navigation; the navigation behavior remains safe
as long as at least one of two agents in an on-collision pair has a
large enough field of view. Neighbors artificially increase the social
margin from robots with urgency [Eq. (17)], in order to watchfully
keep a larger distance, avoid obstructing their path, and enforce
safety — like drivers do when hearing a siren.

Confusion. Confused agents move slowly [Eq. (16)] and make
neighbors increase their social margin [Eq. (17)] to reduce distur-
bance caused by the confused agents’ erratic direction changes.
Confused agent can exploit sensing information from neighbors
once these activate the parallel behavior bhelp [Eq. (19)].

4 EXPERIMENTAL SETUP
The navigation tasks are performed using a realistic simulator for
large scale navigation experiments [14]. The robotics agents sim-
ulate the marXbot robots (see Figures 2 and 3), a small mobile
platform [4], specifically designed for swarm robotics.

Simulation results are compared in three settings: baseline, in
which no emotion-based modulation is implemented; modulation,
where emotions are implemented and modulate the agents’ behav-
ior, but are not perceived by others; modulation & communication,
where the neighbor’s emotional state is fully taken into account.
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To highlight the contribution of the emotions dynamics, we re-
strict our analysis to a model where the other factors (energy level,
abilities, personality and task) are uniform and constant. Moreover,
because the set of emotions is small and easily interpreted, we could
choose sensible values (listed in Table 2) for the free parameters in-
troduced in Section 3. For example, to fix λrot, we estimate the value
of the maximal amount that a robot, with normal sensing, would
normally have to turn. We did not tune parameters to optimize
performance.

Table 2: Top row: constant behavior parameters. Bottom row:
emotion dynamic parameters.

ηmin η0 ψmin ψ0 ψmax vmin v0 m0 mconf murg
0.1s 0.5s π /4 π /2 π 0.03m/s 0.3m/s 0.2m 0.2m 0.4m

τfrustration τfear τurgency τconfusion λeff λfs λnf λtd λrot
3s 5s 5s 10s 1 1/16 1/3 1 0.8

Performance measures. To compare the navigation performance
of the swarm, wemeasure: (a) the efficiency ∈ [0,1] as the number of
targets that the robots were able to reach, relative to the number of
targets that the robots could reach in the same time while traveling
in straight lines (i.e., the relative throughput); (b) the collision hazard,
as the number of collisions per time unit and per agent.

5 EXPERIMENTAL RESULTS

Figure 4: Time-lapse of the CIRCLE scenario for 50 robots:
(t = 0s) robots start along a circumference and need to ex-
change positions with the agent at the opposite end; (t = 5s)
robots converge at the center and (t = 10s) tend to form a
cluster, which in this case is quickly unraveled as agents nav-
igate towards their target (t = 20s). Frustrated robots are de-
picted in yellow; fearful robots in red. Animated videos of
all scenarios are available in the supplementary material.

We report results for three experiments, in which robots attain
a different high-level goal by means of the proposed framework.

Preventing and escaping deadlocks in crowds. We considered the
CIRCLE task (Figure 4), in which agents initially placed along a
circle need to exchange position with the agent at the opposite side.
If many agents are considered, they tend to form a cluster in the
center of the circle, which is difficult to escape and in which several
collisions may occur.

Results. Figures 5(a, b) show that in the baseline case, efficiency
drops dramatically as soon as more than 30 agents are considered;

when emotions are implemented, relative efficiency decreases lin-
early with the number of robots even with swarms as large as 100
robots, and deadlocks never occur. The role of emotion sharing, in
this case, is to promote the onset of fear ahead of time, i.e. when a
proper cluster has not yet formed, but many frustrated robots can be
perceived in the vicinity, which normally preludes to the formation
of a deadlock. Fearful agents then slowly negotiate the difficult
environment, which results in a much-reduced probability of colli-
sions; this behavior additionally leads to a small (albeit statistically
significant for 50 < N < 80) efficiency improvement.

Enabling efficient activity of agents with time-critical tasks. We
considered the CROSS task (Figure 2 Right), in which agents need
to travel back and forth between two targets at opposite vertices
of a square; this creates a crossroad in the middle where robots
frequently need to navigate around each other.

Results. Figure 5(c) shows that the proposed modulation mech-
anism leads to a large increase in efficiency for agents with time-
critical tasks (+36% for N = 50) that are more prone to experience
urgency. When robots can also perceive the emotions of others,
efficiency is further boosted (+54% for N = 50), as fearful/watchful
agents tend to move out of the way of agents in a hurry.

Assisting robots with sensing issues. Considering the CROSS task
as in the previous case with N = 13, temporary sensing malfunc-
tions are simulated for 3 agents by stochastically adding white noise
to their sensor measurements. An agent with a sensing malfunc-
tion will perceive the direction of its current target with a varying
angular error.

Results. We observe that agents affected by a sensing malfunc-
tion become confused within a short time, as they perceive to be
following excessively convoluted paths; the resulting information-
sharing mechanism leads to a very limited efficiency loss on the
whole swarm (-6% in the worst case, compared to -15% when the
proposed mechanism is not implemented), see Figure 5(d). Note
that, in this case, emotions are used to limit and optimize commu-
nication among agents by sharing sensing information only when
useful. Without emotion sharing, the performance is slightly lower
than the baseline, because the normal functioning agents become
overly cautious and take longer paths around confused agents.

6 CONCLUSIONS
We presented a control architecture for robotic agents that is in-
spired by the dual nature of animal emotions, which act both as
an internal behavior modulator, and as an implicit communication
mechanism that allows for emerging coordination. We showed an
implementation in the context of multi-robot navigation and colli-
sion avoidance, that was useful to solve three different issues and
measurably increased the performance of the swarm behavior. Even
though one could obtain similar results by handcrafting problem-
specific behavior modulations, the approach we propose yields a
simpler, more modular, more interpretable and reusable architec-
ture. Future work will be aimed at validating the universality of
the proposed emotion vocabulary and experimenting its applica-
tion to real world scenarios in which multi-robot coordination is
important.
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Figure 5: Quantitative performance measures for efficiency and collision hazard (a) and mean efficiency (b, c, d) are re-
ported for the three considered cases: baseline (blue dots), modulation without communications (brown diamonds), mod-
ulation+communication (black squares). Areas between the lines denote 95% confidence intervals for the average over 25
randomly-initialized replicas.
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