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Abstract— The vision-based mechanisms that pedestrians in
social groups use to navigate in dynamic environments, avoiding
obstacles and each others, have been subject to a large amount
of research in social anthropology and biological sciences.
We build on recent results in these fields to develop a novel
fully-distributed algorithm for robot local navigation, which
implements the same heuristics for mutual avoidance adopted
by humans. The resulting trajectories are human-friendly,
because they can intuitively be predicted and interpreted by
humans, making the algorithm suitable for the use on robots
sharing navigation spaces with humans. The algorithm is
computationally light and simple to implement. We study its
efficiency and safety in presence of sensing uncertainty, and
demonstrate its implementation on real robots. Through exten-
sive quantitative simulations we explore various parameters of
the system and demonstrate its good properties in scenarios of
different complexity. When the algorithm is implemented on
robot swarms, we could observe emergent collective behaviors
similar to those observed in human crowds.

I. INTRODUCTION

We present a novel, human-inspired approach for ground
robot navigation and obstacle avoidance in dynamic envi-
ronments. The scenarios that we address feature the simul-
taneous presence of multiple robots (hereafter generically
referred to as robot swarms) as well as of human pedestrians.
The problem of robot swarms sharing common navigation
spaces with humans arises in many practical contexts, includ-
ing the use of mobile autonomous robots for assistive tasks
in domestic environments, for patrolling and surveillance, for
service delivery in health care institutions, and so on. In more
general terms, given the expected pervasive deployment of
mobile robot technologies in societal and industrial settings,
it is customary to endow mobile robots with navigation
capabilities that meet both engineering and societal objec-
tives. From an engineering point of view, robot navigation
needs to be effective in terms of followed trajectories, robust
to inherent sensing errors, scalable to differently crowded
environments, and distributed, meaning that robots to not
need to rely on any external infrastructure to effectively
move around. From a societal point of view, robot navigation
behaviors need to be safe, as well as be human-friendly.

With human-friendly we mean that robot movements must
exhibit behaviors that are acceptable by humans. In terms of
local navigation, this can be ensured by following trajec-
tories that are similar to those that a person in a similar
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setting would follow. Such trajectories have the property
to be predictable and legible by humans, meaning that a
person observing robot motion can intuitively understand
the spatial target the robot is heading to [1]. Other than
limiting emotional stress, this ensures that both humans and
robots can navigate the space efficiently. In fact, if navigation
algorithms generate unpredictable trajectories, humans have
to frequently change their local plans to move around the
robots, ultimately resulting in less efficient navigation for
both groups.

In this work, we address both the engineering and societal
aspects of the navigation problem in shared human-robot
spaces, with a particular emphasis on the societal aspects.
We propose a robot navigation algorithm which only relies
on local sensing (i.e., it is fully distributed and does not
need external infrastructures), is reactive, which allows it
to operate in real-time in dynamic environments, and also
includes a proactive planning component, based on a local
estimation of the mobility of the agents in its field of view.
To address the societal issues, the algorithm is based on a
recently published heuristic model, proposed by Moussaid et
al. [2] for explaining pedestrian behavior. The heuristic has
been validated in large-scale comparative experiments and
has shown to closely model observed human trajectories in
controlled conditions [3].

To the best of our knowledge, this is the first porting
of such a heuristic into the robotics domain. In our im-
plementation, we provide a number of extensions to the
basic model, taking into account the core differences between
robots and humans. In particular, we included changes aimed
at: (i) enforcing safety (lateral contacts and pushing are an
integral part of human crowd motion but are unacceptable in
robotics); (ii) respecting human personal spaces whenever
possible; (iii) preventing local crowding situations, which
could naturally lead to reduced efficiency; (iv) dealing with
deadlock conditions that can arise among robotic agents. It
must be noted that the resulting robot navigation and obstacle
avoidance algorithm, while designed having in mind mixed,
human-robot crowds, works equally well when only robots
are in the environment. In this respect, it can play the role of
a simpler, and more flexible alternative to existing methods
[4] (e.g., the ones based on velocity obstacle, which are
described in the related work, Section .

The main contribution of the paper is, therefore, a bio-
inspired, local navigation algorithm with both reactive and
proactive components, which can generate human-like and
human-friendly trajectories. At the same time, the algorithm
is conceptually simple, computationally light, independent
on the specific sensing technique, inherently able to handle



heterogeneous agents, and able to provide effective, robust,
and scalable navigation behaviors. The algorithm is described
in Section We discuss and demonstrate its implemen-
tation on both real and simulated robots (in Section [IV),
validating the simulation results with real experiments, and
we also provide quantitative results obtained from large-scale
simulations (Section [V). In particular, we test the scalability
of the approach to large robot swarms, the robustness to
sensing inaccuracies, and the effect of various parameters
affecting safety and human friendliness. We additionally
demonstrate that robot swarms implementing the proposed
algorithm exhibit macroscopic behavioral patterns (i.e., the
emergence of lanes of opposite flows in corridors) matching
those observed in human crowds [3].

II. RELATED WORK

The problem of dynamic obstacle avoidance is widely
researched both in the robotics and in the sociology literature.
Our works builds upon results in both fields.

In robotics, the most common approach is based on the
concept of velocity obstacle [5], also known as collision cone
or forbidden velocity map — i.e. the sets of velocities that will
lead a robot to collision: choosing a velocity outside such
set ensures that no collision will occur. Different variants
have been presented to improve the prediction of the other
agents’ trajectories [6], [7], [8], to add recursion and account
for sensing errors [9] in a probabilistic framework, and
to ensure smooth trajectories by sharing the responsibility
to avoid a collision with other agents (reciprocal velocity
obstacle [4]). Applications to very crowded scenarios also
introduce asymmetries in the obstacle velocity construction
[10] so to enforce conventions allowing smooth, determinis-
tic interactions between agents. The velocity-obstacle model
was successfully applied to explain certain characteristics of
pedestrian behavior [11] and validated by comparing real and
simulated trajectories of two crossing humans.

All such works build basically on a mechanicistic and
artificial approach to navigation, which is designed to ensure
safety, and adapt it to produce smooth trajectories. On the
contrary, our work stems from a heuristic [2] modeling
human behavior — which produces paths with good effi-
ciency, smoothness, and legibility — to which we add some
modifications to ensure safety. This paper represents the first
implementation of this heuristic to robotics. Implementation-
wise, such heuristic allows us to decouple the computation
of the desired heading and speed. This leads to a simpler
implementation than velocity-obstacle approaches, which
requires a search over the two-dimensional velocity space.

Humans mutual avoidance and sharing of space has been
extensively studied in sociology, among other for the pre-
diction of the behavior of crowds. The original models are
based on the study of proxemics [12], which formalizes the
concept of personal and social space; pedestrian behavior
based on social forces [13] enforces people to keep a
minimum distance from neighbors whenever possible. Such
model was successfully used for crowd simulation and also
inspired several human tracking and avoidance models in

robotics [14], [15]. Simple rules on pedestrian navigation
(passing left and shared collision avoidance responsibility)
were incorporated in a sampling-based [16] planner for
collision avoidance among robots. Moussaid et al. [2], [3]
recently proposed a fundamentally different model based on
a simple heuristic; in this paper, we consider such heuristic
and extend it for implementation in robots.

By adopting such heuristic, we ensure that robot will ex-
hibit a human-like behavior. In turn, this ensures that humans
sharing space with the robot will be able to predict its inten-
tions thus improving efficiency and social acceptance. Our
work achieves this goal in the context of obstacle avoidance,
or local path planning. In the significantly different context
of global path planning — in which complete information
about the environment is available — different approaches
have been proposed with the same goals; discomfort to
humans is minimized through the enforcement of specific
constraints [17], additional cost terms [18], [19], [20] or rules
implementing specific social conventions [21]. In the same
framework, extensions were proposed for addressing more
complex interaction scenarios like a joint working space
[22], for ensuring that robots do not obstruct human’s view
of the environment [23] and for navigating among moving
humans [24], [25]. A related line of research is concerned
with learning-based prediction of human behavior [26], [27],
for avoiding unwanted interference with human activity [28],
or navigate shared spaces [29].

The interplay between local and global navigation algo-
rithms has been shown to be of large importance for the
legibility and acceptance of the resulting trajectories: in
particular, human-aware global path planners only resulted
in acceptable trajectories when coupled with human-like ob-
stacle avoidance algorithms [1], which further highlights the
importance of human-friendly local navigation algorithms.

I1I. METHOD
A. Behavioral model for human locomotion

In this section we summarize the behavioral model of
vision-based human locomotion in social groups that we used
to design our robot navigation algorithm [2], [3]. To account
for the targeted robotic context, we generically speak in terms
of an ’agent’, rather than a human, and introduce some minor
modifications to the original model.

Given a 2D reference frame F' depicted in Figure [} a
moving agent directed to a target point O is characterized by
an optimal (open space) moving speed v,y and a horizontal
field of view 2¢ (in radians). In the reference frame F',
Z(t), U(t) are agent’s position and velocity vectors at time
t, and «(t) is agent’s heading, (i.e., the direction it is facing
with respect to F’s horizontal axis). We assume that agent’s
ground occupancy is approximated by a circle of known
radius 7.

To direct its movements, the agent makes use of a cogni-
tive function f(«), a € [a(t) — ¢, a(t) + ¢], based on
visual information, that maps each heading « within the
field of view to the distance that the agent can travel in o/s
direction before colliding with any visible obstacle, when



moving at speed vop.. The distance is bounded by a maximum
horizon H. With s(«) we denote the 2D segment connecting
Z with the point at distance f(«) along direction « (i.e., the
point of first collision for heading o). When computing f(«),
all obstacles are assumed to keep their current heading and
speed, thus moving according to a uniform linear motion
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Fig. 1: Tllustration of variables and functions defined in text.
The red curve is the estimated free distance that the blue
agent can travel in direction « up to the first collision, that
in direction ages Will happen at the red point where the blue
(agent) and green (robot neighbor) dotted circles touch.

Given the above notations, the agent walking behavior can
be explained by the following simple heuristic rules.

First, the agent determines its desired heading cvges(t) as
the direction allowing the most direct path to destination
point 0, taking into account the presence of obstacles:

Qe (t) = argmin,, d <s (), 6) ) (1)

where d is the minimal distance between segment and point.
In practice, if the robot moves towards direction oges at a
constant speed vop, it will reach a point closer to the target
than any point it would reach when moving along any other
direction o # Ques.

The desired velocity vector ¥Uge(t) is then determined. It
has direction defined by the heading ages(t) and modulus
Vdes(t), set to allow stopping in a fixed time 71 within the
free distance D(owes) € [0, H], currently seen in direction

Oldes:
D (Oides) ) . (2)

Vdes (1) = min (vopt7
The actual velocity vector ¥(t) is continuously adjusted
depending on Ve (t):
v Udes () — U(t)
dt ) ’
where the fixed parameter 7 represents the time constant
characterizing the exponential speed profile, which in prac-
tice modulates the smoothness of motion. Controlled labora-
tory experiments measured 73 = 7o = 0.5 s for pedestrians
in normal walking conditions [31].
Note that, since computing f(«) values involves a rough
prediction of agent’s and obstacles’ future trajectories, the

3)

'Humans feature a dedicated neural mechanisms to detect object mo-
tion [30] and predict the time-to-collision with obstacles.

resulting behavior is proactive in that it attempts to avoid
potential collisions well before they are expected to occur.

B. Application to robotic navigation

The model described above results in smooth paths, which
have shown to closely match the characteristics of pedestrian
motion in large-scale controlled experiments, both for single
trajectories and macroscopic crowd motion patterns [3].
Robots following the same rules would therefore exhibit a
behavior which is predictable, legible, and acceptable by
humans sharing the same environment with robots.

Neverthless, the immediate application of the model to
robotics is hindered by several shortcomings, with the main
one related to the fact that trajectories are not (entirely)
safe: in fact, collisions among humans happen routinely and,
especially in crowded situations, contribute to define the
motion of tightly-packed groups through reciprocal pushing
forces. Even with sparse agents, collisions may happen when
agents with limited field of view are unable to perceive each
other when traveling side by side, or in presence of sudden
direction changes, which are only partially accounted for by
the heuristic model.

Clearly, in our context, collisions (both among robots and
between robots and humans) should be avoided as much
as possible. Therefore, we extend the heuristic with the
concept of safety margin, which is common to many obstacle
avoidance approaches. In particular, when computing f(«),
we account for an increased radius ' = r 4+ m, for each
agent, with mg being a fixed safety margin parameter.

Under the unrealistic assumption of perfectly-accurate and
360° sensing, choosing a sufficiently large value for m;
ensures that no collisions can occur. However, with realistic
sensing inaccuracies and limited field of view, a completely
safe behavior cannot be guaranteed. On the other hand,
large safety margins also lead to inefficient and unnatural
trajectories (e.g., see [32] for a recent study on planning in a
probabilistic framework with imperfect sensing). Therefore,
given the characteristics of the sensing subsystem, the safety
margin mg sets the tradeoff between efficiency and safety
of the trajectories, which is investigated in Section [V-B.
Unlike [2], in our approach, if an obstacle is inside the safety
margin, we set f(a) = D(a) = 0 for all angles o which
would bring the robot closer to the obstacle.

One can observe that, when crossing in opposite direc-
tions, robots tend to pass each other (and humans) as close
as allowed by the safety margin, regardless of how much
space is available. While being appropriate for modeling
human behavior, this behavior is not always suited to robots,
for two reasons: (i) a robot passing a human should, if
possible, keep a distance larger than the minimum safe
distance, to avoid invading its personal space and causing
discomfort; (ii) groups of robots passing close to each other
can induce a temporary situation of local crowding, which
occasionally results in temporary deadlocks. Increasing m
is not an appropriate solution for either problems, because
agents should be allowed to come close to each other when
needed (e.g., in order to negotiate tight spaces).



Therefore, we introduce the concept of social margin,
my > mg, and redefine ' = r + m(d), with m(d) being a
piecewise linear function of the distance d between the agent
and its closest neighbor. m(d) is bounded between my, for
small values of d, and m;, for large d values (see Figure E])

Mg
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Fig. 2: Illustration of safety margin m, and social margin
m¢. As a function of the distance d of the closest neighbor,
a margin ms < m(d) < my is added to each obstacle’s
physical radius r. The figure also illustrates the foot-bot
robot, on which we implemented the navigation system.

As a result, when enough space is available, d is large
and the robots tend to keep a distance larger than strictly
necessary. On the one hand, this increases social acceptance
by humans, on the other hand, this reduces the likelihood
of forming local high-density clusters of robots (further
enhancing safety as side-effect) which may result in dead-
locks. Still, deadlocks cannot be completely ruled out and
may occasionally occur, especially with large sensing errors
and/or large numbers of robots packed in tight spaces.

General solutions for avoiding traffic jams and escaping
from deadlocks require higher-level planning and/or explicit
coordination among agents, both of which do not fit in our
current, low-level approach. Partial solutions include the use
of implicit coordination (e.g., in the form of social conven-
tions), or of evasive behaviors. We implemented the latter
approach, with a clause loosely inspired by human behavior:
after being stuck for a short time, an agent recognizes that
it has been likely involved in a deadlock. Then, after a
random time interval, it becomes ochlophobic (i.e., exhibits
a fear of crowds) and spends a random amount of time
moving towards a random, obstacle-free direction (regardless
of its target), before switching back to the normal behavior.
Experiments in Section [V-C show that this simple heuristic
leads to a virtuous emerging collective behavior, quickly
unraveling complex deadlocks involving tens of agents (see
the video attachment).

IV. REAL AND SIMULATED ROBOT MODELS

The navigation algorithm described in Section [l has been
implemented on real robots (the foor-bots) as well as in
simulations, based on simulated foot-bot models.

A. The foot-bot platform and algorithm implementation

The foot-bot robot (Figure [2) is a small mobile platform,
directly derived from the marXbot [33], specifically designed
for swarm robotics [34]. The robot is 30 cm wide and
20 cm tall, and is based on an on-board ARM-11 proces-
sor programmed in a Linux-based operating environment.

Differential-driven motorized tracks allow mobility at speeds
up to 0.3 m/s.

In the context of this work, foot-bots use two distinct sens-
ing modalities. (i) An IR-based range-and-bearing (RAB)
sensor and communication system, which allows a robot
to detect its line-of-sight robot neighbors within a 4-meter
range and estimate their relative distance and bearing; each
robot also advertises its current speed and relative bearing
to neighbors through the same system. (ii) A forward-facing
camera with a 2¢ = 50° field of view and a down-sampled
resolution of 128 x 92 px, which is used for localizing
humans, targets, and walls at 25 frames-per-second.

Because our main focus is on navigation algorithms and
not on sensing, we use straightforward techniques for pro-
cessing camera images: entities of interest, (e.g., landmarks
used to identify a destination point, or humans) are marked
with differently colored bands at a known height from the
floor. Robots convert each frame to the HSV color space,
and segment pixels corresponding to each object. After
performing connected component analysis, this results in a
set of binary blobs. From the image coordinates of each
blob’s centroid, the robot computes distance and bearing
of the corresponding entity by means of an homography
transform, which can be estimated in advance given that
the camera parameters and height of each entity are known.
The velocity of humans is estimated by finite differencing,
after smoothing position readings with a moving average
filter defined over a period of 0.5 s. Note that the position
of targets (i.e., destination points) is sensed online through
vision, and not given by an external observer or a higher-
level path planning algorithm.

Robot controllers operate on a 0.1 s timestep and are
not synchronized with each other. At each timestep, rules
in Eq. and yield the desired values for heading
(cvdes) and speed (vges), respectively. Both in simulation and
in the implementation on the foot-bots, we use a mobility
model similar to Eq. that takes into account the robots
constraints and controls the speed of left (w') and right (w™)
differential driven track wheels as follows. First, we define
the desired rotation speed in terms of the desired differ-
ential Xqes(t) between the left and right wheels’ tangential
velocities; Xdqes(t) is found as a function of «(t) and oges(t),
bounded by a maximum allowed value Ymax = 0.1m/s:

ges(t) — a(t) L

) = —A 7= 4
Xdes( ) T 9 ( )
— Xmax if Xées < —Xmax
Xdes(t) = +Xmax  if Xées > +Xmax 5
Xies(t)  otherwise,

where L is the wheel axis length and 7, determines the
time constant for robot rotation smoothing. We fix 7 =
79 = 7, = 0.5s to mirror human motion characteristics, but
such parameters can be decreased for more reactive (but less
predictable) behavior as well to increase its caution when
71 > 2. The desired tangential speed of the left (w),,) and
right (w?,,) wheel is then defined as w),, = vges(t) — Xdes(t),



Wes = Vdes (t) + Xdes(t). For each of w! and w", the actual
rotation speed is modulated as w = “—*, and clipped
in such a way that |w| does not exceed a maximum speed
Wpmaz, Which for foot-bot robots corresponds to 0.3 m/s.

B. Robot simulation

We developed a custom simulator for performing large-
scale experiments with both foot-bot and human models.

Simulated vision sensor readings approximate the sta-
tistical properties of localization errors from monocular,
catadioptric, or stereo cameras. That is, precise and uniform
bearing resolution but large uncertainty in depth estimation,
which increases for objects farther away. More specifically,
given an obstacle whose ground truth relative position is
expressed in robot-centered polar coordinates as (p, §). The
observed position (p’,0") is given by 6/ = 0 + ¢e; p' =
p + kpge, where: e ~ N (0, o) models the localization error
in the normalized image space, ¢ denotes the camera field of
view, and k is a constant depending on the characteristics of
the depth estimation approach. In the following, we set ¢ =
1/128 (i.e., 1 pixel on a 128 x 96 sensor) and k = 10, which
well fits the errors observed in real robots. We can evaluate
the impact of sensing errors by tuning the o parameter. As in
the real robot implementation, velocity vectors are estimated
by finite differencing.

Simulated range and bearing sensors, which well model
other sensing modalities like laser, ultrasound, time-of-flight
or structured illumination (e.g. Kinect), are instead character-
ized by constant angular resolution for bearing and distance-
independent uncertainty for range (within maximum limits)
and a constant probability (set as 80%) for the message to
be received.

V. EXPERIMENTS

We report the results of several simulation experiments
exploring the characteristics of the proposed navigation ap-
proach in three different settings. In the setting cross (Sec-
tions [V-B), we consider four target destinations at the
vertices of a square with an edge of 4 m. Robots are divided
in two equally-sized groups: robots of each group travels
back and forth between two opposite vertices, thus creating a
busy crossroad in the middle. In setting circle (Section [V-C),
robots are initialized at regular intervals along a 5 m radius
circumference, and need to reach once a target opposite to
their starting position, which creates challenging conditions
close to the center of the circumference. In setting periodic
corridor (Section [V-D)), groups of robots and humans travel
in opposite directions in an infinite straight corridor bounded
by walls, which is a setup often considered in crowd analysis
literature.

For each experiment, we test system’s performance by
varying a specific parameter. For each value of the parameter
we perform R = 50 simulation runs (replicas), each lasting T’
seconds and initialized randomly. The following performance
measures have been considered.

e Relative throughput: defined as the number of targets
that a robot has reached during the simulation. It

is expressed as a fraction of the number of targets
that the robot could reach if traveling along straight
paths and ignoring collisions (which is an ideal upper
bound for throughput). Throughput is directly related
to the minimum time the robot would take to reach
the same targets under the same conditions above. We
also measure time, discounting, for each agent, the time
it takes to reach the first target in order to reduce
the impact of initial conditions. The resulting quantity
is adimensional, bounded between 0 (worst) and 1
(optimal), and is averaged over all the robots in the
simulation.

o Path irregularity: defined as the amount of unnecessary
turning per unit path length performed by a robot,
where unnecessary turning corresponds to the total
amount of robot rotation minus the minimum amount
of rotation which would be needed to reach the same
targets with the most direct path. Path irregularity is
measured in rad/m, and is averaged over all the robots
in the simulation.

e Total number of collisions: measuring the collisions
occurring during simulation, which is reported as colli-
sions per robot per minute.

A. Scalability and validation with real robots

Within scenario cross, we initially verify the scalability of
the algorithm versus an increasing number of robots, and val-
idate simulation results by comparison with the performance
measured on foot-bot robots. Results are reported in Figure 3]
We can observe that the results obtained with real robots in
the same conditions closely match simulations. When large
swarms are considered, the relative throughput decreases and
path irregularity increases, because robots must follow longer
and more curvy trajectories in order to avoid collisions. Even
in very crowded scenarios, paths remain well smooth and
predictable (well shown in the video attachment).

In the real robot implementation, despite the severe hard-
ware limitations, the navigation controller requires invariably
less than 20 ms of computation time per timestep. In sim-
ulation, we also tested robustness to timesteps longer than
0.1 s, and found that in all considered scenarios, performance
begins to degrade only when the timestep exceeds 0.4 s.

B. Safety of trajectories

In the same cross scenario we study the effect of differ-
ent parameters on system performance in terms of relative
throughput and safety, which is measured as number of
collisions per robot per minute. We consider the challenging
case in which all obstacles are perceived through vision, thus
dropping the range-and-bearing sensor and ruling out any
explicit communication mechanism among robots. Figure F]
shows the effects of different visual sensing errors o, of the
camera field of view ¢, and of the safety margin m.

As expected, unreliable sensing (larger o) leads to more
collisions (Figure [fa). At the same time, trajectories are less
efficient, because robots need to change plans often in order
to make it up for sensing errors. Also a narrow field of view ¢
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Fig. 4: Experimental results for safety in the cross scenario. N = 10 robots, 7' = 900 s. Visual localization error o = 0.008
corresponds to 1 pixel in a 128 x 96 image and matches errors observed on real robots.

leads to collisions (Figure[db), but in this case trajectories are
slightly more efficient because robots tend to follow (unsafe)
direct paths since they cannot perceive (and thus account for)
obstacles at their sides.

The rightmost plot in Figure [ shows the impact of
the parameter m, (safety margin) under realistic operating
conditions (¢ = 1rad, o = 0.008). A safety margin larger
than 10 cm effectively prevents collisions among robots.
However, large ms values lead to less efficient trajectories
because robots deviate significantly from the optimal path in
order to keep large distances from neighbors.

C. Scalability and planning horizon in the circle topology

The scenario circle is quite a challenging one. It was
also studied in previous works [10]. We investigate the
system performance for different values of swarm size N
and horizon H. Larger swarms obviously lead to less efficient
and regular paths, mostly due to crowding at the center of
the circle (Figure [5a). Moreover, in this context the impact of
H is apparent. A relatively large horizon allows the robots
to earlier react to the upcoming crowding in the center of
the circle, causing the emergence of an interesting collective

behavior: all robots pass to the right of the center (or, in an
equal number of simulations, to the left), despite having no
explicit communication nor implementing social conventions
dictating so. The resulting trajectories (see Figure [6) are
extremely efficient. When a shorter horizon or social radius
do not grant the time to develop such coordination, robots
jam in the center of the circle, but can efficiently escape the
resulting deadlocks using the heuristic for evasive behaviors
described in Section [[TIl This is well illustrated in the video
attachment.

D. Macroscopic crowd behaviors in the periodic corridor

Figure [7] reports the results obtained in the periodic
corridor scenario (i.e., a straight line corridor in which the
top and the bottom ends are connected, like on the lateral
surface of a cylinder). Agents traveling in opposite directions
exhibit collective behaviors matching those observed in stud-
ies of human crowds: they tend to form ordered flow lines
(despite being initialized randomly and implementing no
explicit rules promoting such behavior). Figure [7a] explores
this behavior versus time when 60 robots travel along the
corridor, 30 robots for each direction. After 40 seconds,
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Fig. 7: Experimental results for the periodic corridor scenario. The Left plot shows the order of agents’ configuration versus
time when only robots, traveling in two opposite directions, are included. Order is 0 when agents are scattered in random
positions, whereas it approaches 1 when they form clear vertical lines of flow (see [3] for a formal definition of order). The
Middle plot shows the performance when different numbers of robots share the corridor with 30 humans. The Right plot
illustrates how humans and robots (which travel at significantly different speeds) tend to auto-organize themselves in vertical
flow fields characterized by homogeneous agents traveling in the same direction (also shown in the video attachment).

order approaches 1, meaning that agents are organized in VI. CONCLUSIONS
vertical flow lines. Figures and Figure consider a We introduced a novel local navigation algorithm for

corridor shared among 30 humans and V' robots. Each group  ground robots, based on a simple obstacle avoidance heuristic
is divided in equal-sized subgroups traveling in opposite  which well models pedestrian behavior [3]. We adapted
directions. As expected, as IV increases, throughput (which  the heuristic to a multi-robot context and designed a few
is reported for robot agents only) decreases, while path  exensions of it in order to ensure effective, safe, and smooth
irregularity increases (Figure [7b). The setting with N = 301is  pehavior in challenging settings.

shown Figure [7c|at three different times, showing the random The algorithm is demonstrated on real robots and on
initial setting, an intermediate configuration, and the ordered  Jarge-scale simulations considering multiple scenarios with

organization reached after 60s.

different characteristics. We explored the effects of differ-



ent parameters on the system’s efficiency, smoothness, and
safety. The simulated experiments also demonstrate good
behavior when sharing spaces with humans.

Current research is aimed at validating the acceptance of
the resulting robots’ trajectories in real settings with humans.
Moreover, additional experiments are planned for validating
the ability of the algorithm to handle heterogeneous agents,
such as robots with dramatically different speeds or motion
behaviors.
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