
On the Impact of Uncertainty for Path Planning

Jérôme Guzzi, R. Omar Chavez-Garcia, Luca M. Gambardella, Alessandro Giusti

Abstract— We consider the problem of planning paths on
graphs with some edges whose traversability is uncertain;
for each uncertain edge, we are given a probability of being
traversable (e.g., by a learned classifier). We categorize different
interpretations of the problem that are meaningful for mobile
robots navigating partially-known environments, each of which
yields a different formalization; we then focus on the case
in which the true traversability of an edge is revealed only
when the agent visits one of its endpoints (Canadian Traveller
Problem). In this context, we design a large simulation campaign
on synthetic and real-world maps to study the impact of two
different factors: the planning strategy, and the amount of
uncertainty (which could depend on the quality of the classifier
producing traversability estimates).

I. INTRODUCTION

Path planning on graphs is a key problem for mobile robot
navigation. In most applications, edges in graphs have one
associated cost, and standard algorithms are applied to find
the lowest cost path. Such cost may be the distance, time
needed to traverse the edge, energy, etc. In all cases, one
assumes that each edge can be traversed. Given a graph,
there is one solution, which can then be executed by the
robot; in case new information becomes available during the
execution, the robot can re-plan its path to the target.

In this paper we consider the case in which some hidden
edges, in addition to a deterministic cost, carry probabilistic
information about whether that arc is in fact traversable.
This is a very relevant scenario in many situations in which
knowledge about the environment is uncertain (e.g., when
we do not know whether a door is open or not). Even
with perfect knowledge of the environment, one may still
be unsure whether a robot can successfully traverse an edge,
e.g., a ground robot dealing with a stretch of uneven terrain at
the limit of its abilities (in this case, the traversal probability
can be estimated with a learned classifier [1], [2]).

Properly representing and handling such probabilistic in-
formation is fundamental for autonomous robots that operate
in real-world, unstructured environments. Humans routinely
do this in many situations too: for example, when walking
off-path in natural environments, when caught walking with
unsuitable shoes on city streets full of puddles, or when
a wheelchair-bound person has to find their way around
complicated architectures with uncertain accessibility.

Depending on the scenario, the fact that a hidden edge is
non-traversable has different interpretations: e.g., if a door is

This research was supported by the Swiss National Science Foundation
through the National Center of Competence in Research (NCCR) Robotics.

All authors are with the Dalle Molle Institute for Artificial Intelligence
(IDSIA), USI-SUPSI, Lugano, Switzerland. jerome@idsia.ch

Results and code to replicate our experiments are available at https:
//github.com/jeguzzi/resilience

not open, the robot will notice that when approaching, and
will be able to plan an alternative path; if an uneven terrain is
not passable, the robot may remain stuck on it and be unable
to proceed or backtrack. Even though these differences
may seem subtle, they yield very different formalizations
of the path-planning problem. In Section II we categorize
such interpretations, and discuss related literature. Then we
focus on one specific interpretation which is very relevant
for robotics applications, which assumes that it is always
possible to plan an alternative path (the Canadian Traveller
Problem), and which we formalize in Section III-A.

We assume that a non-ideal estimator uses pre-existing
knowledge (e.g., from an aerial image, 3D reconstruction,
geographic information system) to produce probabilistic
traversability information for each hidden edge (see Fig. 1
and Section III-B)). For example, the classifier may know
that there is rugged terrain in a given area and therefore
assign a 50% probability for the corresponding edge to be
traversable by the robot; or the estimator may use existing
information to estimate that a door may be open with a 90%
probability. Uncertainty has two sources: 1) the inaccuracy
of the estimator (which is not always correct and confident);
2) the number of [hidden] edges that require traversability
estimation. In this context, the optimal policy selects the
robot’s actions also taking into account the risk and cost of
backtracking if a non-traversable edge will be discovered; we
discuss such policy and simpler strategies in Section III-C.

How much does the performance of these strategies de-
pend on the amount of uncertainty? The main contribution
of this work focus on answering this question. We setup
a large simulation campaign on synthetically-generated and
real-world maps (Section IV), report results (Section V) and
discuss them (Section VI); Section VII concludes the paper.

Fig. 1: Left: we consider an agent on a graph, where some
edges are hidden (dashed lines). For each hidden edge, a
non-ideal estimator provides a calibrated estimate for the
probability (light green background) that it is traversable.
When visiting a node, the agent has revealed to it the true
traversability of all incident edges, and replans accordingly.
Right: faced with a non-traversable edge, the agent has to
backtrack to reach the target through a different path.

https://github.com/jeguzzi/resilience
https://github.com/jeguzzi/resilience

II. RELATED WORK

A. Interpretations of traversability for planning problems

We consider the case of path planning on graphs whose
edges have an associated traversal probability. Once the robot
is at a node n, incident to edge e that has traversal probability
q(e), it may turn out that e is in fact non-traversable. Three
alternative interpretations for this event are meaningful in
robotics.

1) The robot gets stuck while attempting to traverse e,
i.e., it can not proceed nor backtrack.

2) The robot tries to traverse e but fails, hence remains
at n (and possibly pays a cost). Attempting to cross e
again may work, with the same probability q(e).

3) The robot observes that e is non-traversable, and
attempting to traverse it makes no sense. e is removed
from the graph and the robot has to plan an alternative
path to its target.

The first scenario gives rise to a multi-objective opti-
mization problem. Each path from source to target will
be associated to a total cost and to a survival probability.
Assuming that the traversability of each edge is independent,
the total traversal probability will be the product of the
traversal probability of each edge on the path. The ideal
path has a low cost and a high traversal probability: these
two objectives can be handled with standard multi-objective
optimization techniques [3], which have been applied to path
planning for vehicles on uneven ground [2], [4].

In the second scenario, one may retry the edge until
successfully traversed; this yields a shortest path planning
problem with stochastic costs, which is a widely researched
variation [5] with many real-world applications.

The third scenario is the focus of our paper. It is known
as the Canadian Traveller Problem [6].

B. The Canadian Traveller Problem

Formally, the Canadian Traveller Problem (CTP) searches
for the optimal policy to navigate a graph with some hidden
edges of unknown traversability: information that will be
revealed only upon arrival at an incident node.

In robotics, we are confronted with the same problem
when a robot can decide whether an edge (whose traversabil-
ity was previously uncertain) is traversable by using local
sensing. For example, when the robot arrives near an area
marked on its map with uncertain traversability, sensing can
reveal information such as: the door is closed; the grass is
too wet and slippery; the slope is too steep to climb.

Computing a policy for the CTP that minimizes the
expected path cost is a #P-hard problem [7]. If we frame the
problem as a partially observable Markov decision process
(POMDP) and use Value Iteration to compute the optimal
policy, computation cost growths o(3n) with the number n
of hidden edges. This makes it practically impossible to solve
CTP for more than a few tens of hidden edges, except for
particular types of graphs, like DAGs, for which an exact
policy have been explicitly formulated [8].

On complex POMDPs, the optimal policy can be effi-
ciently approximated offline [9] (i.e., the policy is computed
only once) or online [10] (i.e., the policy is revised during
execution); heuristics specific to the CTP are based on Monte
Carlo Sampling [11], [12] and AND-OR trees [13].

Extensions of CTP account for remote sensing [14] and
multi-agent systems [15]. Adjusting traversability beliefs
along the path, according to Gaussian Processes, allows one
to model realistic problem, where uncertainty on different
edges is not independent [16].

In this paper, contrary to the mentioned related works, we
do not investigate how to efficiently compute or approximate
the optimal policy for CTP. Instead, we study the impact of
uncertain estimations on the quality of policies.

III. MODEL

A. Problem formulation

We are given a graph G = (N,E) and an agent that moves
on G. At the beginning, the traversability r : H → {0, 1}
(0: non-traversable, 1: traversable) of some edges H ⊆ E
is not known to the agent. A non-ideal estimator estimates
the traversal probability as q : H → [0, 1]. The agent uses
knowledge of q to navigate between a starting node s ∈ N
and a target node t ∈ N according to navigation policy π.
We assume that s and t are connected.

The problem is framed as a POMDP, whose states (n, k)
are given by a node n ∈ N and by the current knowledge
k : H → Ω = {0, 1, unexplored} of the true values of
traversability of H . A navigation policy π : N × ΩH → N
selects the next node the agent will travel to according to
its state. When the agent reaches a new node n, it observes
the true value of some edges Hn ⊆ H and sets k(e) =
r(e), ∀e ∈ Hn. In the original CTP, Hn is the set of edges
incident to n. The cost of a policy is the cost of the trajectory
from s to t that it generates. The optimal policy πopt is
defined as the policy with the lowest expected cost.

If the traversability estimation q is exact, it associates a
100% traversal probability to hidden edges that are in fact
traversable, and a 0% probability to edges that are not; then
we can expect that πopt will lead the agent to follow the
minimum-cost path.

However, in the following we assume q to be inexact, i.e.,
it may assign non-zero probabilities to edges that are in fact
non-traversable. Then, the optimal policy may lead the agent
to reach a node where an edge, that would be followed next,
is revealed to be non-traversable, and thereafter backtrack
to follow a different path. Similarly, if a traversable hidden
edge on the minimum-cost path is assigned a probability less
than 100%, the optimal policy may prefer a longer path.

We are interested in how the cost of a policy depends
on the quality of the estimations, which we assume are
generated by a binary classifier.

B. Binary traversability classifier

We model q as a stochastic function; given an edge with
a true traversability r, it assigns a traversability probability
by sampling from a probability distribution that depends on

r (Fig. 2). To keep the model simple, we assume that the
distribution is symmetric if we exchange the classes; this
models the assumption that the classifier works equally well
for traversable and non-traversable edges

p(q|r = 0) = p(1−q|r = 1) = Bα,β(q) = Bβ,α(1−q). (1)

Bα,β represents the family of Beta distributions, which is
well suited to model binary classifiers [17], [18], [19], [20].

Fig. 2: Left: relation between α, β and AUC for a calibrated
classifier (β = α + 1). Right: probability distribution of the
classifier output q(e) applied to a non-traversable (red) or
traversable (green) edge; for a strong (top), medium-quality
(middle), weak (bottom) classifier. Note that the strong
classifier returns polarized (close to 0.0 or 1.0) outputs,
whereas the weak classifier is uncertain and aware of it
(outputs are close to 0.5)

We limit our analysis to calibrated classifiers (i.e., p(r =
1|q) = q), which is the case if β = α + 1: this implies that
the score returned by a calibrated classifier can be interpreted
directly as a probability by the agent. Intuitively, this means
that if we collect many hidden edges for which the classifier
returned a given probability q, a fraction close to q of them
will in fact be traversable.

A calibrated classifier may or may not be accurate. Follow-
ing the best practices in Machine Learning [20], we measure
a classifier’s quality via its Area Under the Receiver Oper-
ating Characteristic Curve (AUC). AUC values range from
0.5 (for a classifier that returns random or constant answers)
to 1.0 (for an ideal classifier). Let e0 be a random non-
traversable edge (r(e0) = 0), and e1 be a random traversable
edge (r(e1) = 1). The AUC value qaucof classifier q can be
intuitively interpreted as the probability that q(e1) > q(e0).
The classifier returning exact answers (1.0 for traversable
edges, 0.0 for non-traversable edges) is calibrated and has
qauc= 1.0.1 A classifier returning always 0.5 is also calibrated
(on a balanced dataset) but has qauc= 0.5, which means that
its answers are not informative.

For any given AUC value 0.5 ≤ qauc ≤ 1.0, there is
a single choice of the pair α(qauc), β(qauc) that yields a
calibrated classifier (see Fig. 2).

C. Optimal and baseline policies
The optimal policy πopt is defined as the policy with the

lowest expected cost: for a given state, the action is chosen

1qauc= 1.0 does not imply calibration: the classifier returning 0.9 for all
traversable edges and 0.1 for non-traversable edges is not calibrated but has
qauc= 1.0 and perfect accuracy.

by accounting for the cost and likelihood of all possible
realizations; in practice, the optimal policy will account for
the risk and cost of backtracking when deciding to follow a
path that traverses an hidden edge; we compute such policy
using Value Iteration [13].

We compare πopt with a family of baseline policies π(τ),
parametrized by a threshold τ ∈ [0, 1]. A policy π(τ) is
defined as follows. In any state (n, k), we consider the
subgraph composed by all and only the edges which are
either known to be traversable, or unexplored, with q(e) ≥ τ
(this excludes the edges known to be non-traversable and
unexplored edges with q(e) < τ). If at least one path to
the target exists in such subgraph, the shortest is computed
and its first edge is traversed; else, the path with the highest
probability of being traversable is computed (regardless of
cost) on the full graph, and its first edge is traversed.

For any τ , π(τ) is guaranteed to eventually lead an
agent to its target t as long as t is reachable from the
source node s. π(τ) defines reactive policies which decide
which edge to traverse next by making hard assumptions on
the traversability of all unobserved edges, but revise these
decisions as soon as new edges are observed.
π(0) is a baseline optimistic policy that strives for the

shortest path, ignoring classifier estimations and assuming
all unobserved edges are traversable.
π(1) is a baseline pessimistic policy: it assumes that

hidden edges are non-traversable unless observed to be
traversable. In the (common) case in which this does not
yield a path to the target, this policy always chooses the
action which proceeds along the path with highest traversal
probability, ignoring edge costs.

IV. EXPERIMENTAL SETUP

In the following, we generate many planning problem
instances, and compare the performance of different policies.

One instance is defined as follows (see right of Figure 3).
• We consider: a graph G = (N,E), in which each edge

has an associated cost; a pair of source and target nodes
s, t ∈ N ; a set H of hidden edges H ⊆ E.

• We generate one realization r : H → {0, 1} of the
hidden edges true traversability, unknown to the agent; it
assigns a binary traversability value (traversable or non-
traversable) to each hidden edge. Each r(e) is indepen-
dently generated following a Bernoulli(0.5) distribution;
if in the resulting graph t is not reachable from s, a new
realization is drawn.

• We generate one realization q : H → [0, 1] of the
traversal probabilities, which are provided to the agent.
q is generated according to r by a classifier with a given
AUC value qauc. In particular, we sample the classifier
output from q(e) ∼ Bα(qauc),β(qauc) if r(e) = 0 or from
q(e) ∼ Bβ(qauc),α(qauc) if r(e) = 1 (see Figure 2).

Once an instance is defined, we compute the optimal
policy πopt, simulate an agent following it in the realization
r, and measure the cost of the resulting trajectory. We do the
same with baseline policies π(τ) for different values of τ .

Fig. 3: Instance generation with a random graph, from left to right: generation of nodes and edges; random choice of edges
in H; realization of each edge as traversable (dark green) or non-traversable (red) (ensuring connectivity between s and t,
gray highlighted path); realization of the traversability estimates (light green) according to the classifier’s model; the agent
at the beginning of the simulation at node s knows the graph and q, but not r.

Fig. 4: 9 out of 100K random graphs and realizations with 7 hidden edges (with an average of 23 nodes and 35 edges). On
each graph, we apply classifiers of different quality to generate more than 1M planning instances.

We do not report these costs directly; instead, we are
interested in the ratio c(π) ≥ 1, called competitive ratio,
between such costs and the cost of the minimal-cost path in
G (which can be computed given r).

In each of the experiments below, we analyze the effect
of a different parameter (qauc, |H|, τ) and report statistics
about competitive ratios of each policy over many instances.

A. Random graphs

We generate random graphs as illustrated in the first three
illustrations (from left to right) of Fig. 3 by: (1) drawing
30 points uniformly between [0, 1] × [0, 1]; (2) connecting
the points using a Delaunay triangulation; (3) selecting s
and t at the bottom-left and top-right corner respectively; (4)
randomly deleting half of the edges without disconnecting s
and t; (5) selecting H as a random subset of edges with
a predefined cardinality; and (6) randomly selecting one
realization r in which s and t are connected. We use simple
strategies to make sure we generate interesting planning
instances. For example: in (4) we prune parts of the graph
that no policy would visit (i.e., branches that lead nowhere);
in (5) we force that at least one hidden edge separates s and
t along the minimal-cost path but we avoid picking hidden
edges that would anyway need to be passed (e.g., bridges
between s and t). For each experiment, we generate planning
instances for 100K random graphs with a realization r (see
Fig. 4).

B. Indoor map

We use a floor map of a real building where an agent has to
estimate the probability that doors are open (i.e., traversable).
The navigation graph depicted in Fig. 5a is composed by
local trajectories derived from the building geometry and
has 187 nodes and 236 edges; s and t are located in two
rooms at the opposite side of the building . The set of H

hidden edges contains all 9 doors that may be traversed when
traveling from s to t. We run simulations over all (29 = 512)
realizations r, generating 100 instances for each classifier
qaucvalue (for total 500K instances).

(a) Indoor floor map: naviga-
tion graph with doors that may
be locked (blue circles), source
(black circle) and target (white
circle) nodes.

(b) Rugged terrain map
with classifier outputs [2]
for traversable (green), non-
traversable (gray) and uncertain
(yellow) terrain.

Fig. 5: Real-world navigation graphs between source (black
circle) and target (white circle).

C. Rugged terrain map

Figure 5b shows a 3D map from the ETH-ASL traversabil-
ity dataset [21]: an experimental scenario with several ob-
stacles, such as bumps, ramps, holes, boxes and slippery
surfaces. A traversability classifier predicts whether the robot
will be able to traverse a patch of terrain [2]. We draw the
navigation graph by hand with 24 nodes and 30 edges. We
take into account traversability estimations to label edges as
traversable, non-traversable or with uncertain traversability.
We identify a total of 8 uncertain edges (corresponding
to challenging terrain such as ramps, boxes edges or high
bumps) which are modeled as hidden edges in H . As above,
we use a single graph from which we generate all (28 = 256)
realizations r, generating 100 instances for each classifier
AUC value (for a total 250K instances).

V. EXPERIMENTAL RESULTS

In Section V-A, we analyze the performance of policies
on random graphs with 7 hidden edges. Then, we look at
results on random graphs with different numbers of hidden
edges (Section V-B) and on real-world maps (Section V-C).

A. Random graph with |H| = 7

1) Baseline policies: Figure 6a illustrates the effect of
different values of τ on the average performance of baseline
policies π(τ). As expected, the performance of the optimistic
policy π(0), which ignores classifier outputs, does not de-
pend on the classifier quality; moreover it has the lowest
average performance. Policies with τ ≈ 0.6 perform best
regardless of classifier quality. For low-quality classifiers,
the performance penalty for being too pessimistic (high τ)
is progressively reduced, to the point that, for extremely
low-quality classifiers, the pessimistic policy π(1) offers
comparable performance. More precisely, from a smooth
u-shaped function for high qauc, the dependency of the
competitive ratio on τ becomes, as we approach qauc= 0.5,
a step-like function that just discriminates if τ > 0.5.

For all other experiments, we only report results for π(0)
and π(1), which have opposite distinguishing characteristics
and are clearly interpretable, and for the nearly optimal
choice of τ = 1/2. In fact, π(1/2) has also a simple
interpretation: it considers as traversable any edge that has a
higher probability to be traversable than not.

2) Impact of classifier quality on competitive ratio distri-
bution: Figures 6c-f report mean, 95%-quantile and cumula-
tive distribution of competitive ratios versus classifier quality.
As expected, the competitive ratios are close to 1 when
the classifier is very accurate (qauc≈ 1) and grows as the
classifier quality decreases. The optimal policy πopt is almost
always better than any baseline policy. The only exception
is the policy π(1/2), which has a higher probability of
minimal cost (c = 1). Not surprisingly, πopt has the lowest
mean cost. For accurate classifiers, policy π(1/2) is on par
with the optimal policy, but performs significantly worse for
inaccurate classifiers. In fact, for inaccurate classifiers, the
gap between πopt and π(1/2) increases while the gap between
πopt and π(0) or π(1) decreases.

In general, the impact of the classifier quality on the
average competitive ratio is limited (c(π) ≤ 1.11). For
reference, the highest competitive ratio sample over all
planning instances and policies is 5.23. When we consider
the 95%-quantile, the impact is more significant, but the
relations between the four policies remain similar.

3) Policies comparison on planning instances: Figure 6b
illustrates the probability that a policy ranks first (possi-
bly tied) among other policies on a random instance; this
represents the fraction of samples for which the agent will
not regret (in the aftermath) having followed a particular
policy. For a good part of these instances, the agent actually
follows the shortest path. We note that the gap between all
four policies fades for low-quality classifiers, while for high-
quality classifiers πopt and π(1/2) finds the best path much
more often than π(0) or π(1).

0 0.2 0.4 0.6 0.8 1

1.02

1.04

1.06

1.08

1.1

qauc= 0.96

qauc= 0.83

qauc= 0.69

qauc= 0.54

τ

av
er

ag
e

co
m

p.
ra

tio

0.6 0.8 1

0.6

0.8

1

qauc

pr
ob

.o
f
c
(π

)
=

m
in
π̄
c
(π̄

)

0.6 0.8 1
1

1.05

1.1

qauc

av
er

ag
e

co
m

p.
ra

tio

0.6 0.8 1
1

1.2

1.4

1.6

qauc

95
%

-q
ua

nt
ile

of
co

m
p.

ra
tio

1 1.2 1.4 1.6
0.6

0.7

0.8

0.9

1

comp. ratio

pr
ob

ab
ili

ty

qauc= 0.96

1 1.2 1.4 1.6
0.6

0.7

0.8

0.9

1

comp. ratio

pr
ob

ab
ili

ty

qauc= 0.69

πopt π(1/2) π(0) π(1)

a) b)

c) d)

e) f)

Fig. 6: Competitive ratio of policies on 100K random graphs
with 7 hidden edges. (a): average as a function of τ ,
with high-quality (black), medium-quality (dark gray) and
low-quality (light gray) classifiers; performance of πopt is
represented by dashed lines of the same color. (b): probability
that a policy has at most a cost equal to any other policy
versus qauc. Average (c) and 95%-quantile (d) versus qauc.
Cumulative distribution of competitive ratios for high-quality
(e) and low-quality classifiers (f).

B. Random graph with 1 ≤ |H| ≤ 9

We report in Fig. 7 how the competitive ratio increases
as a function of the number of hidden edges |H|. The
impact of the classifier quality on the policies’ performance
growths with planning complexity (higher |H|), yet the
relative performance between policies remains similar.

We also report the measured mean computational cost of
the optimal policy πopt by Value Iteration using a single
modern CPU core. The baseline policies π(τ) have negligible
computation costs that scale polynomially with |H|.

C. Real-world graphs

We compare the results on random graphs with exper-
iments on two real maps, where we study the impact of
classifier quality on the policies’ performance. Note that
although we sample over all possible realizations (and many
classifications), these two maps represent just two graph
instances and the policies performance has a large variability
over different graphs.

2 4 6 8
1

1.05

1.1

πopt

π(0)

π(1/2)

π(1)

|H|

av
er

ag
e

co
m

pe
tiv

e
ra

tio
qauc= 0.96

2 4 6 8

πopt

π(0)

π(1/2)

π(1)

|H|

qauc= 0.69

2 4 6 8

10−3

10−2

10−1

|H|

co
m

pu
ta

tio
na

l
co

st
[s

]

πopta) b) c)

Fig. 7: Competitive ratio on random graphs as a function of
|H|, with a high-quality (a) and a low-quality (b) classifier.
(c): mean computational cost for a single instance of πopt.

0.6 0.8 1
1

1.05

1.1

1.15

πopt

π(0)

π(1/2)

π(1)

qauc

av
er

ag
e

co
m

pe
tiv

e
ra

tio

0.6 0.8 1
1

1.2

1.4

πopt

π(0)

π(1/2)

π(1)

qauc

av
er

ag
e

co
m

pe
tiv

e
ra

tio

a) b)

Fig. 8: Average competitive ratio of policies as a function of
classifier quality on real world maps: Indoor floor map (a)
and Rugged terrain map (b).

a) Indoor map: Figure 8a summarizes the policies’
performance on a real building map, whose hidden edges
correspond to doors (that may be open or closed). The impact
of estimation quality on the optimal policy is comparable
to the previous results. Interestingly, on this particular map,
baseline policy π(0) perform much better (and π(1/2) much
worse) than on most random graphs.

b) Rugged terrain map: We report a similar experiment
for the Rugged terrain map in Fig. 8b. The average competi-
tive ratios for this graph are high when compared to random
graphs (≥ 90%-quantile), denoting an harder than average
planning instance. As above, the performance of π(0) with
respect to πopt is much better than most random graphs.

VI. DISCUSSION

The following interesting aspects summarize our findings.
a) Lower estimation quality makes the planning prob-

lem harder: The gap between the average performances of
the best heuristic and of the optimal policy grows mono-
tonically as the classifier quality decreases. We interpret
this as the planning problem becoming harder, in the sense
that computing an expensive policy (i.e, the optimal one)
becomes necessary to limit the penalty in performance.

b) Lower estimation quality blurs the difference among
the heuristics: While for good quality estimations the best
heuristics (τ ≈ 0.6) are clearly preferable, for low-quality
estimations half of the heuristics (τ > 0.5, i.e., any relatively
pessimistic policy) have the same performance.

c) The optimal policy performs better in mean and
worst cases, but performs worse in the median case: The
optimal policy is the best policy w.r.t. the average cost
(unsurprisingly since this is how it is defined). Yet, in the
median case, the best heuristics have a higher chance of being
the best policy on random graphs; their larger chance to incur
in very large costs penalizes their mean performance.

d) Policy performance heavily depends on the map:
On random maps with 7 hidden edges (out of about 35), the
average competitive ratio is small; in fact, for about 60% of
the instances the cost is minimal for all policies. We may
be tempted to conclude that it is not worth to develop high-
quality traversability classifiers; yet on many maps, such as
the two real maps we presented, the gaps are significantly
larger (i.e., the problem is harder).

e) The choice of policy depends on the classifier quality
and on the concrete implementation scenario: Concrete
scenarios where a navigation algorithm is adopted carry sec-
ondary objectives and requirements, which guide the choice
between an heuristic and the optimal policy. For high-quality
estimations, when optimizing the performance in the median
case, and when computational resources are constrained,
heuristics are a very good choice. On the contrary, with
low-quality estimations and when focusing on the average
(or worst-case) performance, the optimal policy is the best
choice.

VII. CONCLUSIONS

We presented a large-scale simulation campaign on mil-
lions of synthetically-generated maps and two real-world
maps in the context of the Canadian Traveller Problem; our
study evaluated the effects of two sources of uncertainty
(inaccuracy of the classifier and number of hidden edges)
on the cost of paths obtained by the optimal policy and a
family of baseline reactive strategies.

We could observe that: (1) uncertainty makes the prob-
lem harder; (2) heuristics perform well with high-quality
classifiers, even more so considering the median case; (3)
when using heuristics, it is better to be slightly pessimistic
(τ > 0.5) than optimistic; (4) there is a large variability in
relative policy performance on different graphs.

One straightforward extension of this work is to increase
the size of the graphs, or the ratio of hidden edges, to verify,
as we believe, that our analysis remain valid.2 We would also
like to investigate the impact of the graphs themselves on
the policy performance, for instance of their density. Which
graphs give rise to the most challenging planning instances?
Are the distributions we used to generate graph samples
representative of real-world maps?

Another very interesting direction to investigate is the role
of calibration as real-world classifiers cannot be perfectly
calibrated, e.g., to consider the impact of accurate but less
trustworthy estimators.

2The optimal policy can only be computed for some tens of edges;
sophisticated (but also computationally expensive) heuristics that perform a
partial exploration of the search space [13] can be used to approximate the
optimal policy on larger graphs.

REFERENCES

[1] W. Wang, M. Shen, J. Xu, W. Zhou, and J. Liu, “Visual traversability
analysis for micro planetary rover,” in Proceedings of the IEEE In-
ternational Conference on Robotics and Biomimetics (ROBIO), 2009,
pp. 907–912.

[2] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti,
“Learning ground traversability from simulations,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1695–1702, 2018.

[3] K. Deb, “Multi-objective optimization,” in Search methodologies.
Springer, 2014, pp. 403–449.

[4] Y. Zhang, D.-w. Gong, and J.-h. Zhang, “Robot path planning in uncer-
tain environment using multi-objective particle swarm optimization,”
Neurocomputing, vol. 103, pp. 172–185, 2013.

[5] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 1994, pp. 3310–3317.

[6] A. Bar-Noy and B. Schieber, “The Canadian Traveller Problem,”
in Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 1991, pp. 261–270.

[7] D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner, “Complexity
of Canadian traveler problem variants,” Theoretical Computer Science,
vol. 487, pp. 1–16, 2013.

[8] E. Nikolova and D. R. Karger, “Route Planning under Uncertainty -
The Canadian Traveller Problem,” Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pp. 969–974, 2008.

[9] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[10] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” in Proceedings of the Annual Confer-
ence on Neural Information Processing Systems (NIPS), 2013, pp.
1772–1780.

[11] P. Eyerich, T. Keller, and M. Helmert, “High-Quality Policies for the
Canadian Traveler’s Problem,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2010, pp. 51–58.

[12] O. F. Sahin and V. Aksakalli, “A Comparison of Penalty and Rollout-
Based Algorithms for the Canadian Traveler Problem,” International
Journal of Machine Learning and Computing, vol. 5, no. 4, p. 319,
2015.

[13] D. Ferguson, A. Stentz, and S. Thrun, “PAO* for planning with
hidden state,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2004, pp. 2840–2847.

[14] Z. Bnaya, A. Felner, and S. E. Shimony, “Canadian Traveler Problem
with Remote Sensing,” in Proceedings of the International Joint
Conference on Artificial Intelligence, 2009, pp. 437–442.

[15] Z. Bnaya, A. Felner, D. Fried, O. Maksin, and S. E. Shimony,
“Repeated-task canadian traveler problem,” AI Communications,
vol. 28, no. 3, pp. 453–477, 2015.

[16] D. Dey, A. Kolobov, R. Caruana, E. Kamar, E. Horvitz, and A. Kapoor,
“Gauss meets Canadian traveler: shortest-path problems with corre-
lated natural dynamics,” in Proceedings of the International Confer-
ence on Autonomous Agents and MultiAgent Systems (AAMAS), 2014,
pp. 1101–1108.

[17] M. Kull, T. S. Filho, and P. Flach, “Beta calibration: a well-founded
and easily implemented improvement on logistic calibration for bi-
nary classifiers,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2017, pp. 623–631.

[18] W. J. Park and R. M. Kil, “Pattern Classification With Class Probability
Output Network,” IEEE Transaction on Neural Networks, vol. 20,
no. 10, pp. 1659–1673, 2009.

[19] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The
Balanced Accuracy and Its Posterior Distribution,” in Proceedings of
the International Conference on Pattern Recognition (ICPR), 2010,
pp. 3121–3124.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[21] M. Wermelinger, P. Fankhauser, R. Diethelm, P. A. Krüsi, R. Siegwart,
and M. Hutter, “Navigation planning for legged robots in challenging
terrain,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 1184–1189.

	Introduction
	Related Work
	Interpretations of traversability for planning problems
	The Canadian Traveller Problem

	Model
	Problem formulation
	Binary traversability classifier
	Optimal and baseline policies

	Experimental setup
	Random graphs
	Indoor map
	Rugged terrain map

	Experimental Results
	Random graph with |H| = 7
	Baseline policies
	Impact of classifier quality on competitive ratio distribution
	Policies comparison on planning instances

	Random graph with 1 |H| 9
	Real-world graphs

	Discussion
	Conclusions
	References

