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Abstract

We propose an industrial measurement and inspection system for steel workpieces eroded by electrical discharge machining,
which uses deep neural networks for surface roughness estimation and defect detection. Specifically, a convolutional neural
network (CNN) is used as a regressor in order to obtain steel surface roughness and a CNN based on spatial pooling pyramid
is applied for defect classification. In addition, a new method for the region of interest selection based on morphological
reconstruction and mean shift filtering is proposed for defect detection and localization. The regressor and classifier based on
deep neural networks proposed here outperform state-of-the-art methods using handcrafted feature extraction. We achieve a
mean absolute percentage error of 7.32% on roughness estimation; on defect detection, our approach yields an accuracy of
97.26% and an area under the ROC curve metric of 99.09%.

Keywords Electrical discharge machining - Convolutional neural networks - Spatial pooling pyramid - Morphological

reconstruction - Mean shift filtering

1 Introduction

The research presented here uses machine learning for mea-
surement and inspection of steel products processed by a die-
sinking electrical discharge machining (EDM) device [1].
Specifically, deep learning and image-processing techniques
have been investigated, allowing for the cost-efficient inte-
gration of machine vision equipment in the EDM machine
tools in order to measure steel surface roughness and inspect
it for possible defects.

Die-sinking EDM comprises an electrode and a workpiece
which is immersed in an insulating liquid such as oil or sim-
ilar dielectric fluids. The electrode and workpiece are then
connected to an appropriate pulsed voltage power supply,
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which generates an electrical potential between these two
parts. When the electrode moves toward the workpiece, a
dielectric breakdown happens between the electrodes (in the
insulating liquid), which results in a plasma channel forma-
tion. EDM has been applied by numerous industries in their
manufacturing developments because of its capability to eas-
ily erode hard materials, like hardened steel and tungsten
carbide, and create accurate and unique shapes. The most
common applications for EDM are die making, mold mak-
ing, and small hole drilling [1].

Roughness measurement for die-sinking EDM steel is
usually performed either with a contact profilometer or opti-
cally, utilizing interferometry or laser scanning confocal
microscopy. The fact that no comparable standard exists
for optical instruments still makes a contact profilometer
essential in every workshop today, at least until optical mea-
surements will reliably deliver comparable results. However,
measurements using a contact profilometer is only suitable
for pointwise measurements and can damage the surface
because it contacts the material surface [2]; moreover, this
technique is difficult to integrate into an EDM machine
because of the size of the measurement device, entailing
significant operational limitations with considerable risk of
collision with the workpiece to be inspected. On the contrary,
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Fig.1 The automation system for measurement and inspection, Die-
Sinking machine AgieCharmilles Form 200 by GF Machining Solutions
a integrated GUI, b image acquisition system, and ¢ workpiece

non-contact optical methods can be more easily integrated
into the machining process.

Without an in-process measurement, if the surface rough-
ness does not match the requirements after the process has
concluded, there is no way of correcting the error. This is
due to the fact that the exact repositioning of workpiece
and electrode, and recreating the microscopic gap conditions
which are required to resume machining, is in many cases
impossible. Depending on the type, size, and complexity of
the workpiece, this can yield very high costs. Therefore, a
vision-based technique, which delivers comparable results
to the contact profilometer has a high potential for the EDM
industry.

Zero defect manufacturing (ZDM) is now a key concept
as industry 4.0 is minimizing human involvement in pro-
duction processes. As a result, publications related to defect
inspection have grown rapidly in the past decade. However,
publications related to the visual inspection of EDM steel
are rare and mostly related to the geometrical defects [3]:
in contrast, defects on EDM steel surfaces have a complex
visual appearance, often with unclear definition, size, and
shape, and are challenging to discriminate from the underly-
ing background [4].

Motivated by these requirements, this paper presents a
machine-integrated, inexpensive optical measurement and
inspection system with two main goals: measuring surface
roughness values comparable to the results originating from
contact profilometer, and inspecting the steel surface for
defects. The system (shown in Fig. 1) relies on a standard
machine vision camera mounted, instead of an electrode, on
the chuck of a die-sinking EDM machine.

The paper is organized as follows. After a review of
related work (Sect. 1.1), the main contribution of the paper
is presented in Sect. 2: a method for EDM steel surface mea-
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surement and inspection, which involves anomaly detection,
roughness estimation, and defect detection and localization.
Section 3 demonstrates experimental results and discus-
sion which describes experimental setup, dataset, evaluation
metrics, roughness estimation, and defect detection results.
Finally, conclusions and future works are discussed in Sect. 4.

1.1 Related work

Surface roughness measurement methods can be either
contact (e.g., profilometers) or non-contact (e.g., optical).
Contact-based methods are simple and widespread, but dif-
ficult to integrate into the machining process, and may
potentially damage the steel surface [2]. In order to solve
these problems and ensure the workpiece quality, non-contact
methods have been proposed as early as four decades ago [5].

Some non-contact methods rely on ad hoc sensors.
Bradley et al. [6] adopt a fiber optics sensor for surface
roughness measurement, in which the surface topography is
observed through phase changes of the incident and reflected
light on the steel surface. Sato et al. [7] proposed a method
based on utilizing a scanning electron microscope for sur-
face roughness estimation. They demonstrated that the profile
of a surface could be obtained by processing back-scattered
electron signals, which correspond to the surface inclination
along with the electron beam scanning direction; then, the
profile of the surface roughness can be derived by integrating
the intensity of the back-scattered electron signal. Infrared
scatter-meters were also adopted for roughness measure-
ments of engineering surfaces [8]. Khan et al [9] proposed a
method based on artificial neural networks (ANN) to model
Titanium steel surface roughness machined by EDM. The
machining parameters including peak current, pulse-on time,
pulse-off time, and servo-voltage are used as inputs to a mul-
tilayer perceptron (MLP) for roughness prediction.

Instead of using specialized sensors, a cost-efficient alter-
native is to rely on standard machine vision cameras or polar-
ized microscopes for non-contact roughness measurement
using image-processing and machine-learning techniques.
Several related works use this approach to measure the
characteristics of a surface [10]. A similar approach adopts
machine learning using input images acquired by polarized
microscopes [11], or use specialized techniques to recon-
struct the 3D topography for roughness estimation [12].

Various classifications have been made for the vision-
based methods that can be distinguished into four general
categories including spectral, statistical, time series analysis,
and learning-based approaches. The most common technique
for texture analysis in the spectral-based methods is Fourier
transform. In an earlier work in [13] a 2-D fast Fourier trans-
form (2D-FFT) of the digitized surface image is used as a
measurement parameter of the steel surface. Since the Fourier
transform does not have the necessary ability to detect local
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irregularities (ignore local deviations), a number of methods
have been developed based on multi-resolution image analy-
sis, e.g., wavelet transform [10], and curvelet transform [14]
for roughness estimation.

Statistical methods often adopted for texture analysis rely
on features such as Local Binary Patterns [45], Haralick
features of the gray level co-occurrence matrix [15], and his-
tograms [16]; time series analysis methods predict the surface
roughness by taking into account the dynamic characteristics
of images such as fractal [17, 18] and the largest Lyapunov
exponent [10].

Learning-based approaches are the last category and can
be divided into two sub-categories consisting of traditional
feature extraction and deep learning-based methods. The
conventional method starts with the feature extraction, fol-
lowed by classic machine learning or ANN approaches. All of
the spectral, statistical, and time series analysis techniques
can be used for feature extraction in this sub-category. In
[19], an MLP neural network was used to model and predict
the optical roughness values using the 2D-FFT of the surface
image as feature. Morala et al. [20] proposed a method to pre-
dict the surface roughness using MLP along with the wavelet
transform of the surface image as a feature. The methodol-
ogy is based on the extraction of texture features from surface
images in the frequency domain using wavelet transform and
a roughness classification using a MLP neural network. Tsai
et al. [21] assessed the surface roughness of machined parts
produced by the shaping and milling processes and extracted
features of surface roughness in the spatial frequency domain
using the 2D-FFT. These roughness features were taken as
input to ANN to estimate the surface roughness. Another
similar approach has been applied for carbon steel and alu-
minum alloy after being processed by milling [11], in which
an MLP is used to predict roughness based on a binary input
image.

However, the end-to-end approach combines feature
extraction and the roughness estimation into one whole using
deep learning neural networks framework in which features
are automatically extracted through the learning of training
sets. The deep learning-based approach is simple and reaches
high detection accuracy. Sun et al. in [2] proposed a method
based on CNN for milled metal surface roughness estima-
tion, which involves texture skew correction, image filtering,
and applying neural network for roughness estimation. Our
approach operates on images from die-sinking EDM, which
have a significantly different, challenging appearance; we
follow a similar approach and adopt convolutional neural
networks (CNN) architectures; we also implement and com-
pare the results with feature-extraction-based approaches.

Defect inspection usually involves two steps including
defect detection and defect classification [4]. Defect detec-
tion approaches rely on statistical, filtering, model-based,
and machine-learning techniques to identify defects and then

using supervised or unsupervised classification methods to
assign the class label of the detected defects (for further infor-
mation see [4]). In this work, we focus on defect detection,
and compare different approaches and classification algo-
rithms. To this end, two approaches are common in the
literature: patch-based methods, which densely classify all
possible patches in the input image, and ROI-based meth-
ods, which only operate on a subset of ROIs. Patch-based
approaches are generally computationally expensive, since
a huge number of possible positions and sizes must be con-
sidered for the patch used as an input for classification. In
this paper, we adopt an alternative approach, which relies on
image-processing techniques for determining a limited num-
ber of ROIs; on each ROI, we then apply binary classification
for defect detection.

Generally, ROI extraction is performed using edge detec-
tion, thresholding, or clustering for segmenting the region or
detect the edges from an image. The purpose of edge detec-
tion is to identify the areas of an image where a large change
in intensity occurs. Edge detection is usually performed uti-
lizing local linear-gradient operators such as Sobel, zero cross
edge detection, and Canny and Roberts cross edge detection
methods [22]. Thresholding is another method applied for
segmentation in numerous image-processing applications.
An object having homogeneous intensity and a background
with a different intensity level could easily be differen-
tiated with this approach. Global thresholding, adaptive
thresholding, histogram equalization, and Otsu threshold-
ing are different types of thresholding techniques [23]. The
segmented image resulted from the thresholding methods
provide more information for subsequent processing tasks.
Clustering is another method that tries to find the relation-
ships among patterns of the dataset by organizing them into
groups or clusters [24]. K-means clustering and fuzzy C-
means clustering are the widely used clustering techniques.

Because of the complex appearance of EDM images, our
approach implements a fusion of morphological reconstruc-
tion and mean shift filtering is proposed for ROI extraction.
Having the defect candidates, the next step is to apply a binary
classification to determine which defect candidates can actu-
ally be considered as a defect.

As mentioned previously, the main objectives of this
research project are applying an image-based regression for
steel surface roughness estimation and a binary classification
for defect detection. Commonly, there are two methods which
are applied for image-based regression and classification
tasks: conventional feature extraction and deep learning-
based methods. The conventional method starts with the
feature extraction, followed by a classification (or regres-
sion) and a result output. The feature extraction process
needs artificial feature designing, which sometimes could
be a tedious and complicated task. However, the end-to-end
approach combines feature extraction and the classification
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(or regression) processes into one whole using deep learning
neural networks framework in which features are automati-
cally extracted through the learning of training sets [25, 26].
The deep learning-based approach is simple and reaches high
detection accuracy. However, its main disadvantage is the
need for a large number of training images which should
cover sufficient defect types; otherwise, detection results
would not ideal. This problem is usually treated by introduc-
ing augmentation techniques to increase the training dataset.
Because of the excellent performance of convolutional net-
works based on deep learning in the field of image processing
and machine learning, it will be investigated in this study for
the roughness estimation through regression and the defect
classification.

2 Proposed method

After analyzing the steel surface images taken by the cam-
era system, we now describe the system design (see Fig. 2)
that fulfills two objectives: (a) roughness estimation and (b)
defect detection and localization. The first step is anomaly
region detection, which involves detecting the out-of-focus
and poorly illuminated area in the image; this typically occurs
when the image acquisition system reaches the edge of the
workpiece being inspected. Since we are using an image-
based measurement for roughness estimation, the anomalous
region needs to be ignored. This is performed by first iden-
tifying the anomalous area and then applying impainting by
selecting random parts of the image from the valid region of
the steel surface.

Defect detection is solved in two steps. In the first step,
we apply image-processing techniques to detect defect can-
didates in the image, and make sure the procedure has high
sensitivity while accepting low specificity—i.e., the algo-
rithm should not miss (almost) any defect, but might detect
several false defects. In the second step, we use heuristics
and machine-learning approaches to determine which defect
candidates can actually be considered as a defect. In the
following sub-sections, the proposed methods for anomaly
detection, roughness estimation, and defect detection and
localization will be explained in detail.

2.1 Anomaly detection

By studying the dataset, it is observed that there is an issue
related to the out-of-focus and poorly illuminated area in the
image (see Fig. 3). Since a low depth-of-field camera is used
for image acquisition, it can be assumed that the anomalous
area in the image is the out-of-focus region. Here, an algo-
rithm based on Laplacian transform is used to identify the
out-of-focus and poorly illuminated area as the anomalous
region [27, 28]. The Laplacian operator is a marginal point
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detection operator that is independent of the edge direction,
and it is a second-order differential operator. Considering
f(x,y) as a continuous two elements function, the Lapla-
cian operation can be defined as follows:

Vif=—Z+—5 @)

where x and y are the standard Cartesian coordinates of the
xy-plane, and 37 is the second derivative.

For digital images, the Laplacian operation can be simpli-
fied as convolving with a kernel:

L K
g, =Y > flx—iy—jHHG, ) )

i=—L j=—K

The Laplacian highlights regions of an image contain-
ing rapid intensity changes. Therefore, if an image contains
high variance regions then there is a widespread of responses
applying the Laplacian operator, which is associated with the
normal or in-focus region. But if the variance is very low,
then there will be a little spread of responses for the Lapla-
cian operator, indicating that there are very few edges in the
region, which is associated with the out-of-focus region.

Anomaly detection is started by applying the Laplacian
operator on the image. It is followed by a global thresholding
using a predefined threshold tuned on a large dataset. After
thresholding, the morphological image filling is performed to
fill the small holes. Since there is only one dominant in-focus
region in the image, the region with the maximum area will be
selected as a valid region (see Fig. 3). The anomalous region
is impainted with part of the steel surface from the valid
region in the image to avoid complications in the roughness
estimation step (see Fig. 3). It should be mentioned that the
defect detection module will only be applied to the valid
region in the steel surface image.

2.2 Roughness estimation

Roughness is traditionally evaluated by moving a contact
stylus over a linear path on the surface and filtering the result-
ing profile to obtain several quantitative surface roughness
parameters as described in ISO 4287 [29]. The most common
parameter used in workshops to qualify the surface rough-
ness is the so-called average roughness (Ra) value, defined
by ISO 4287:1997. The Ra is the arithmetic average devia-
tion from the mean line in the machined zone, and it can be
calculated by using the following:

l L
Ri= 1 / 12001ds 3)
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Fig. 2 Block diagram of the
proposed image-based
measurement and inspection
system

Capture Image
from Steel Surface

L

Steel Image Laplacian Operator

Fig.3 Anomaly detection and impainting for roughness estimation task

where L is the evaluation length and Z is the roughness profile
height as a function of x.

Figure 4 shows a number of samples of the EDM steel
surfaces with different roughnesses. Here, the roughness esti-
mation task is modeled as an image-based regression problem
using the data provided by the image acquisition system inte-
grated with the EDM machine. Having the dataset containing
the images from the steel surface and measured Ra values (Ra
between 0.14 and 3.6 pm), the task is to train a deep CNN
to estimate the Ra for the new unseen images from the EDM
steel surface [30]. A CNN s a special kind of multi-layer neu-
ral network, designed to recognize visual patterns directly
from images with minimal pre-processing. CNNs are usu-
ally adopted for classification tasks (i.e., in problems where
the target variable is categorical), but can be also applied
for regression tasks (i.e., to estimate a scalar quantity): to
achieve that, we remove the fully connected softmax classi-
fier layer typically used for classification, replacing it with a
fully connected layer with a single node with a rectified linear
unit (ReLU) activation function. The model is trained using
aregression loss (e.g., mean squared error). A similar appli-
cation which is using CNN for image-based regression is
vision-based real estate price estimation [31]. This is known
as a supervised regression problem and is structured in two
sequential steps. In the first step, the CNN is trained using
a training dataset, a collection of many training instances in

—

Anomaly Roughness
Detection Estimation |
| Roughness
I Defect (True/False)
Location of Defects
ROI Selection D?f:ECt. 41
Classification

Valid Region Impainted Image

which each instance is a pair of one input image and the
corresponding Ra value of the surface measured by a con-
tact profilometer. This step is time consuming and performed
only once, off-line, on a powerful computer. In the second
step, the trained CNN is copied to the EDM machine and
used to predict the Ra value for new unseen input images
from new EDM steel surfaces.

Some of the CNN architectures of ImageNet large-scale
visual recognition challenge (ILSVRC) top competitors con-
sisting of LeNet-5 [32], AlexNet [33] and VGGNet-16 [34]
have been modified here for the regression task instead of
classification, i.e., the last layer has been changed to ReLU
activation function instead of softmax for classification. We
have used simple CNN architectures to limit the amount
of weights and allow fast inference on CPU-only memory-
limited deployment machines. There are other alternatives
for the CNN architectures, e.g., MobileNet [35], ResNet [36],
and Xception [37], which can be applied for the regression
task here at the expense of slower training and inference
times. The three networks considered for the regression task
here consist of 5, 8, and 16 layers, characterized by a sequence
of alternating convolutional and Max-Pooling layers; which
is inspired by the visual cortex of the human brain. In addi-
tion, AlexNet [33] and VGGNet-16 [34] incorporate dropout
and batch normalization functionalities. Dropout functional-
ity allows the CNN network to randomly set a fraction rate of

@ Springer



21 Page6of 15

J. Saeedi et al.

Fig.4 Image samples showing
the EDM steel surfaces with
different roughnesses

input units to 0 at each weight update during the training step,
which helps prevent overfitting. A batch normalization layer
is also used to transform inputs so that they are standardized,
i.e., they will have a mean of zero and a standard deviation of
one, which helps reduce the sensitivity to the initial starting
weights, allows much higher learning rates for increasing the
speed at which networks train.

Since the size of the steel surface image is large (740 x
480 x 1) and contains much redundant information for the
task of estimating the roughness, the image is divided into
four quadrants and then used for the training (370 x 240 x 1).
The estimated roughness for the image can then be obtained
using the mean of the results of these four quadrants. The
input image and the roughness values are rescaled between
the range [0, 1] for the training. The training process consists
in determining a value for each of the network parameters,
in such a way that, for each image in the training set, the
predicted output value is as close as possible to the corre-
sponding desired output (i.e., the true Ra value of the surface
visible in the image given as input). The loss is the mean
absolute percentage error between the predicted and desired
outputs, and the network is trained using stochastic gradient
descent (batch size of 128) using the ADAM optimizer [38],
with an initial learning rate of 0.0001. By separating 10%
of the training set as a validation set, the model that gives
the best result on the validation set over 300 epochs will be
stored. The trained network will then be used for roughness
estimation (Ra value) for the test images.

Other alternatives to CNN for regression tasks using state-
of-the-art methods are also implemented and compared and
will be presented in the experimental results section.

2.3 Defect detection and localization

This section presents the proposed approach for defect detec-
tion and localization task. Generally, there are three different
situations when looking for defects in steel products [4].
Defects can be simply detected in most situations by using
standard image-processing techniques such as thresholding
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and segmentation. A slightly more difficult situation is the
case that the defects are not very clear in terms of their size
and shape; however, it can still be recognized from the under-
lying background. The most complicated case is a defect in
which its definition, size, and shape are not clear, and it is
difficult to distinguish the defect from the underlying back-
ground. The defects that are visible in the EDM steel surface
are an example of the third situation because of the complex
background due to different roughnesses.

By analyzing the defected steel images, it is observed that
there are two types of defects named as black and white
defects available in the dataset as shown in Fig. 5. The bright
defects could be the area with a roughness higher than the rest
of the steel surface (i.e., area where the electrical discharge
machine worked the most in the roughing process), or the
area damaged by the mechanical scratch. The dark defects
are because of the burn (arc-spot) or hydrocarbon-dielectric
decomposition product that is dried on the surface, or dirt due
to material in the tank (hairs of rags or particles of materials)
[39].

The proposed approach for ROI selection is a combination
of different image-processing techniques which is shown in
Fig. 6. The key idea behind the method that is used for ROI
selection is to divide peak and valleys regions in order to
better identify the defected regions. In this way, the defected
regions become more differentiated from the surrounding
area. The first step toward ROI selection is image denoising
using the bilateral filtering, which is a non-linear, edge-
preserving, and noise-reducing smoothing filter for images.
In the bilateral filtering, the intensity of each pixel is replaced
with a weighted average of intensity values from neighbor-
ing pixels. These weights are obtained based on a Gaussian
distribution. It is followed by a grayscale morphological
reconstruction (MR) step to divide the denoised image into
two images named as peaks and valleys, which are represent-
ing bright and black defects respectively.

Grayscale reconstruction is one of the important tech-
niques provided by mathematical morphology [40], which
is mainly applied for several filtering, segmentation, and fea-
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Fig.5 Image samples showing the EDM steel surfaces with different types of defects and roughnesses
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Fig. 6 Block diagram of the proposed ROI selection method

ture extraction tasks. If we assume in an image the x and y
axes represent pixel positions and the z-axis represents the
intensity of each pixel, there would be a three-dimensional
map in which the intensity values represent elevations, as in
a topographical map. In topographical terms, the areas with
low and high intensities in an image, valleys and peaks, are
important morphological features because they can often spot
important image objects.

In order to find valleys regions in the image, morpholog-
ical reconstruction is started by the erosion operation. An
image named as seed is initialized to the local maximum val-
ues of the original image. It should be mentioned that along
the borders of seed image, the original values of the image
are used. Erosion expands the minimal values of the seed
image until it encounters a mask image. These border pixels
will be the starting points for the erosion process. The ero-
sion is then limited by setting the mask to the values of the
original image. The eroding started from the edges removes
holes, since the holes by definition are surrounded by pixels
of brighter value. Finally, the dark regions are isolated by
subtracting the reconstructed image from the original image
named as valleys.

Alternatively, bright spots in an image (named as peaks
image) can be found using morphological reconstruction by
the dilation operation. Dilation operation acts as the inverse of
erosion and it expands the maximal values of the seed image

until it encounters a mask image. Since this is an inverse
operation, the seed image is initialized to the local minimum
values of the original image instead of the maximum. The
remainder of the process is the same. The peaks and valleys
images are then separately being processed to obtain bright
and dark defect candidates as shown in Fig. 6. The valleys
image is then smoothed by the mean shift filtering algorithm
[41].

The idea behind the method that is used to enhance the
image is the fact that human knowledge about images of
the physical world is that they are spatially smooth, in the
sense that neighboring pixels are more likely to belong to the
same object (class) than to different ones. Mean shift filtering
method is a clustering algorithm which is commonly used in
computer vision and image-processing applications. First, for
each pixel of an image having a spatial location and a partic-
ular color, a set of neighboring pixels within a spatial radius
and a defined color distance is determined. Then, for this set
of neighboring pixels, the new spatial center (spatial mean)
and the new color mean value will be calculated. These calcu-
lated mean values will be used as the new center for the next
iteration. The described procedure will be iterated until the
spatial and the color (or grayscale) mean stops changing. At
the end of the iteration, the final mean color will be assigned
to the starting position of that iteration. One of the advan-
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tages of mean shift filtering is the edge-preserving capability
compared to other alternative smoothing techniques.

The next step is to apply the MR once again to find val-
leys in the smoothed image and to ignore homogeneous areas
in the thresholding step. Because of the complexity of the
image’s background due to different roughnesses and also
different illuminations, a method based on k-nearest neigh-
bors (k-NN) is applied for image thresholding. First, a small
set of diverse images have been selected for manually select-
ing the thresholds for making the train-set. Then a k-NN
regressor (with k = 1) is trained using mean, standard devi-
ation, and roughness of the images as input and integer
threshold as output. Finally, the threshold will be selected
using trained k-NN. After thresholding and pruning small-
sized objects in the binary image, the isolated objects in the
binary image will be considered as dark defect candidates.

Another conceptually simple algorithm applied on the
peaks image to find ROI for bright defect candidates. Simi-
lar to the valleys image, the peaks image is smoothed using
a Gaussian filtering approach for a lighter smoothing com-
pared to the mean shift filtering applied for valleys image.
It is followed by image thresholding using Otsu’s method
[23]. Pruning based on the object’s size in the binary map
is applied to remove unlikely defect candidates. The thresh-
old for pruning is adaptively obtained based on the image
roughness, the lower is the roughness the lower will be the
threshold. It should be noted that the defect candidates that
have overlap with edge region (which is obtained by anomaly
detection) will be neglected for the classification step. Some
of the important steps of the ROI selection algorithm are
visually demonstrated by applying on a sample defected steel
image in Fig. 7.

Having the ROI candidates, the final task is to classify
them as defects or not. Generally, there are two ways to
deal with images with different sizes using deep learning-
based classification. The first approach is resizing the images
into fixed-size representation preserving the aspect ratio or
not. The second one is to apply a feature selection method
after convolutional layers and before dense layers to gener-
ate a fixed-length feature vector. The latter shown promising
results for image classification tasks [42]. Therefore, a sim-
ilar strategy is applied here for different ROIs to provide a
binary classification.

He et al. proposed a pooling strategy called spatial pyra-
mid pooling (SPP) layer in order to provide a fixed-length
vector before dense layers for CNN-based classification [43].
The convolutional layers accept arbitrary input sizes; how-
ever, they produce outputs of variable sizes. A fixed-length
feature vector is a requirement for the classifiers like support
vector machine (SVM) or fully connected layers in the case of
CNN. This kind of fixed-length vectors can be created using
the spatial pyramid pooling [44], which can preserve spatial
information through pooling in local spatial bins. Since the
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spatial bins have proportional sizes with respect to the image
size, therefore the number of bins will be fixed regardless of
the image size. Standard CNNs use sliding window pooling
in contrast to SPP [43], where the number of sliding windows
will be dependent on the input size. In order to adopt the CNN
for images of arbitrary sizes, the last pooling layer should be
replaced with a SPP layer. In each spatial bin, it will pool
the responses of each filter. The outputs of the SPP will be
k M -dimensional vectors with the number of bins denoted as
M (k is the number of filters in the last convolutional layer).
The fixed-dimensional vector will be used as the input to the
fully connected layer.

Inspired by [42], a new architecture consisting of three
convolutional layers followed by max pooling, one convolu-
tional layer followed by SPP and three dense layers is used
here for the task of binary classification (see Fig. 8). The
activation function for convolutional layers is ReLU, and the
sigmoid function is selected for the dense layers. In addi-
tion, the dropout function is used with a rate of 15% in dense
layers to avoid overfitting problems.

The network accepts images with different sizes as input,
however, since two pooling layers are applied (one max pool-
ing and one SPP), the input image width and length should
be equal or larger than eight pixels. Therefore, slightly larger
windows around the defects are extracted as ROI in order
to consider not only the size limit but also the neighboring
pixels. Since the Ra is being available for each image being
inspected for defect detection, thanks to roughness estima-
tion using CNN, it can be used as an auxiliary input for the
binary classification task. Considering the fact that there is a
limited number of defected images having a limited number
of roughnesses in the training set, it is decided to give the
network only a number between one to five from very low to
very high roughnesses, in order to limit the chance of over-
fitting. The roughness class is added to the network after the
SPP layer (see Fig. 8).

The input image is rescaled between the range [0, 1], and
the categorical cross-entropy or log loss is used as the loss
function for the training. The proposed network is trained
using stochastic gradient descent using the ADAM optimizer
[38], with an initial learning rate of 0.00003. By separat-
ing 10% of the training set as a validation set, we save the
model that gives the best result on the validation set over 300
epochs, (which requires about 24 h on a 24-CPU workstation
equipped with 4 T K80 GPUs). Since we have images with
different sizes, batch processing is not possible, therefore, the
network training is time consuming; however, it is an offline
processing task and will be performed only once. The trained
networks will be used for binary classification task given the
ROIs for defect candidates as input.

Other alternatives to CNN-based binary classification
using state-of-the-art feature extraction methods are also
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Fig. 7 Visual representation of proposed ROI selection method, a steel image, b peaks image, ¢ Otsu thresholding, d ROI result for bright defects
after pruning, e valleys image, f mean shift filtering, g morphological reconstruction, and h ROI result for dark defects after k-NN-based thresholding

and pruning

golnput
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Fig.8 Proposed architecture used for defect classification; the input
ROI (top left) is processed by a sequence of convolutions (Conv),
max-pooling and spatial pyramid pooling layers; three fully connected

implemented and compared and will be presented in the next
section.

3 Experimental results and discussion

In this section, the results of the proposed methods for rough-
ness estimation and defect detection tasks will be presented.
In addition, it will be discussed how to collect data and evalu-
ate the proposed framework as well as several state-of-the-art
approaches.

The classic feature extraction-based approach is also con-
sidered here for comparison. Specifically, the state-of-the-art

4 pooling
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(dense) layers yield two output neurons, whose activations are mapped
to the probabilities of being defect and not

image features consisting of histogram (H), Hu moments
(Hu), Haralick texture features (HT), local binary patterns
(LBP) [45], histogram of oriented gradients (HOG) [46], and
Haar-like features (Haar) [47] are used for both regression
and classification tasks.

For the regression task, the state-of-the-art models includ-
ing SVM with radial basis function kernel [48], and extreme
gradient boosting (EGB) with Tweedie regression [49] are
implemented and compared. Roughness estimation results
using the CNN-based network consisting of MobileNet [35],
ResNet [36], and Xception [37] have been also implemented
and compared. Since 2D-FFT feature has been applied in
earlier works [13, 19, 21], a method based on 2D-FFT fea-
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ture extraction and a three layers MLP network has been
implemented and fine-tuned in order to provide a baseline
for roughness estimation results.

For the defect classification task, the state-of-the-art mod-
els consisting of the k-NN, decision tree (DT), SVM [48],
random forests (RF) [50], and EGB [49] are implemented and
compared. The CNN with LeNet-5 [33] architecture training
with a resized ROI dataset (64 x 64) is also implemented for
comparison. Deeper networks also can be considered for the
classification task, however since there may be a lot of defect
candidates in a single image, it will be very time consuming.
Different combinations of features are rescaled in the range
of [0, 1] and applied to provide different results for the regres-
sion and classification tasks. It should be mentioned that
parameter tuning is performed for different models included
in the comparison in order to find the best solution for them.

3.1 Experimental setup

The EDM machine used for this project is built by GF
Machining Solutions (see Fig. 1). The camera used to take
pictures of the workpiece is custom made by Conoptica
AS, a Norwegian company specialized in camera-based
measurement solutions. This particular camera is able to
auto-illuminate the surface of the workpiece and focus
extremely close to it. Thanks to that it is possible to have a
detailed image of the surface and see how much is eroded by
the machine. It uses a circular light-emitting diodes (LEDs)
ring light that produces uniform diffuse front illumination,
which can be considered as dark field lightening [51]. In the
dark field lighting method, the light source and the CCD sen-
sor are on the same side of the steel surface. In this case, the
reflection angle is not equal to the incident angle, and the line
between the CCD sensor and the image of the light source
is not on the same line as the reflected light; therefore, it is
difficult for light to enter the CCD sensor.

3.2 Dataset

The dataset for the roughness estimation task was acquired on
different samples, each machined from a different steel typi-
cally used to produce molds. The samples were machined
on an AgieCharmilles Form 200 LTC die-sinking EDM
machine. On each sample, a set of cavities with different
Ra values were machined, the nominal Ra values range from
0.14 to 3.6 wm. The samples were cleaned in an ultrasonic
bath prior to measurement. The roughness of the bottom
surface of each cavity was measured with the line profil-
ing method using a contact stylus surface profiler (Taylor
Hobson Form Talysurf 120). Five measurements have been
made automatically for each cavity. The result was an aver-
age value of Ra as defined by ISO 4287 [29]. A series
of non-overlapping images covering the bottom surface of
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each cavity has been acquired automatically using a sensor
mounted on the chuck of the EDM die-sinking machine. The
field of view was approximately 2 x 1.3 mm with aresolution
of 752 x 480 (approximately 2.6 um/pixel). The image was
stored lossless in PNG format, without any processing. The
exposure parameters were kept constant and were chosen to
avoid over- or under exposure and to minimize noise. The
sensor used a built-in illuminator and was not sensitive to
ambient light. The resulting dataset contains 14,000 images,
which is divided into 11,200 images in a training set and
2800 in a testing set (20%). The dataset has been analyzed
and impainted if necessary by an anomaly detection algo-
rithm, which is described in Sect. 2.

Due to being trained on labeled data, feature extracted
by CNN is much different from the handcrafted features,
which is considered data-dependent. In general, the gener-
alization ability is considered to benefit from the large-scale
labeled data taken into the process of the training model.
In practice, more data lead to more discriminative informa-
tion learned and less prone to overfit. Deepid [52] for face
verification tasks is a good example, which introduces more
data into model training to get a better result. Therefore, the
augmentation techniques including horizontal and vertical
flipping, and random brightness augmentation (well-suited
for the task) are used to generate more training data. The
brightness of the image can be augmented by either ran-
domly darkening images or brightening images. The training
set involves 100,000 images after the augmentation.

The dataset for the defect detection task was generated
using 500 defected images with different roughnesses and
1200 random clean images (Ra values range from 0.14 to
3.6 wm). The proposed ROI algorithm and manual label-
ing are used to generate the dataset including 24,000 ROIs
(20% used as test set) images with different sizes including
6000 defected and 18,000 clean samples. The augmentation
techniques including horizontal and vertical flipping, random
brightness augmentation, and transposing are applied to gen-
erate around 350,000 images for the training set. Since it is
not possible to use batch processing for training of the CNN
based on SPP, first we use the training set without augmen-
tation to train the network and then augmentation is applied
for fine-tuning the network.

3.3 Evaluation metrics

The evaluation metrics employed for the regression task are
mean absolute error (MAE) and mean absolute percentage
error (MAPE). Both of them are popular measures for eval-
uating the accuracy of prediction models. Equations (4) and
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(5) give the definitions for these two metrics, where p; is the
predicted value and #; is the true value for the i-th instance:

N
1
MAE = — ;m — pil 4
1 & ti — pi
MAPE = — ! ! 5
7 2 ®)

i=1

The evaluation metrics employed for the binary classifica-
tion tasks are classification accuracy (ACC), area under the
curve (AUC), and time complexity. ACC is the number of
correct predictions made as a ratio of all predictions made:

ACC = (TP + TN)/(TP + FP + TN + FN) 6)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

The AUC is obtained by measuring the area under the
receiver operating characteristics (ROC) curve. The ROC
curve is created by plotting the true positive (TP) against the
false positive (FP) at various threshold settings. The AUC
represents a model’s ability to discriminate between positive
and negative classes. Time complexity (the amount of time it
takes to run the algorithm) is also used for comparing differ-
ent algorithms. The results for time complexity are averaged
over 1000 runs.

3.4 Roughness estimation results

It should be noted that the same training and testing split are
used to evaluate all the approaches. Table 1 shows the regres-
sion results for different feature combinations and models.
From the results, it can be seen that the handcrafted fea-
tures applied for roughness estimation reaches to 12.93% for

Table 1 The regression results for different combinations of features
and models

Combination (#dim) Feature

SVM EGB

MAE MAPE MAE MAPE
Fi: H, Hu, HT (55) 0.203 26.89 0.201 16.62
LBP, F; (105) 0.155 17.32 0.146 15.52
HOG, F; (115) 0.204 22.43 0.180 17.13
Haar, F; (136) 0.257 20.59 0.289 27.82
LBP, HOG, F; (165) 0.163 16.95 0.158 13.72
LBP, Haar, F; (186) 0.181 19.26 0.183 18.18
HOG, Haar, F; (196) 0.194 20.32 0.200 18.59
All features (246) 0.132 13.03 0.128 12.93

MAPE and fails to generate comparable results to the deep
learning-based method as shown in Table 2, which is 7.32%.

It can be observed from the regression results for different
CNN architectures in Table 2 that the VGG-16 in this case
outperformed other models for the roughness estimation task
based on MAE metric. Another reason besides using a deeper
network could be due to applying dropout function in the
dense layers of VGG-16 to avoid overfitting and therefore
leading to a better generalization compared to the LeNet-
5 architecture. The experiments with the newly developed
CNN architectures like MobileNet [35], ResNet [36], and
Xception [37] yielded similar quantitative performances with
higher inference times.

The result for the 2D-FFT feature with a three-layer fine-
tuned MLP method, which is used as a baseline here, is
shown a large performance gap compared to the proposed
CNN-based approach. The 2D-FFT feature has been applied
in earlier works [13, 19, 21] for roughness estimation. It is
due to the fact that the EDM surface image does have some
dominant frequencies but it is not periodic, and therefore the
roughness cannot be easily captured exclusively by 2D-FFT
as feature.

From the time complexity point of view, considering the
large gap of the performance between MLP and CNN-based
methods as shown in Table 2, the increase of time complexity
from 0.0089 (seconds) for MLP to 0.0143 for CNN (LeNet-
5) would be an acceptable trade-off. It is also interesting that
the deep learning-based approach almost runs 12 times faster
than the classic feature extraction method.

On average, the MAE and MAPE for steel surfaces in the
range [0.14, 1.0] are 0.023 and 6.51%, which grow to 0.128
and 8.56% for range [1.0, 2.0]. The errors increases to 0.217
and 8.43% for Ra>2.0 pm. The ground truth roughness val-
ues measured using line profiling method versus estimated
roughnesses obtained by the deep learning-based approach
in the test set are shown in Fig. 9.

3.5 Defect detection results

The defect classification results using state-of-the-art classi-
fiers and deep learning-based methods are shown in Tables 3
and 4, respectively. It can be seen that unlike the regression
task, the classic methods could generate comparable results
to the deep learning-based methods applied here. However,
the network proposed in this paper based on SPP outper-
formed other approaches in terms of two metrics consisting
of ACC, and AUC.

A simple and effective way of boosting the performance of
classification is to combine the output of several classifiers.
If the errors of different classifiers have zero mean and are
uncorrelated with each other, then the average error could be
reduced by a factor of M by simply averaging the output of the
M models [53]. Here two CNN-based classifiers including

@ Springer



21 Page 12 of 15 J. Saeedi et al.
Table 2 The regression results for different CNN architectures and the best feature combination
Metric 2D-FFT CNN architectures Best F.C

MLP
LeNet-5 AlexNet VGG-16 MobileNet Xception ResNet

MAE 0.159 0.1110 0.1007 0.0960 0.0968 0.1003 0.1089 0.128
MAPE 15.63 7.732 7.324 7.561 7.930 7.982 8.164 12.93
Time complexity (370 x 240) (s) 0.0089 0.0143 0.0189 0.0256 0.0465 0.0521 0.0630 0.296
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the proposed network and LeNet-5 trained on the resized
dataset are combined and used as a hybrid method. It can be
clearly seen from Table 4 that using a committee of classifiers

considerably boosts the ACC up to 97.26 and AUC up to
99.09.

In terms of time complexity, the deep learning-based
approaches are much faster than the classic methods as shown
in Tables 4. It is important due to the fact that there are a lot of
ROIs as defect candidates in an image for the classification
task, e.g., if there are 20 defect candidates in an image, the
hybrid method is 200 times faster than the best feature com-
bination and model. Figures 10 and 11 demonstrate both the
ROI detection and the defect classification results for sample
images with different roughnesses and different defect types.
The ROI selection algorithm proposed here works very well
to consider all of the possible candidates for the classifica-
tion step. It should be mentioned that the classification results
presented here are based on the selected ROIs in the image,
not the whole image individually.

In terms of error analysis, one error that can possibly hap-
pen is related to the ROI selection algorithm. It is possible
that the ROI selection misses some of the defects due to the
image’s poor resolution and wrong threshold selection; how-
ever, based on the empirical results, it is observed that the
proposed ROI selection is accurate, and very sensitive not to

Table 3 The classification

results for different Featur.e . . 4-NN DT SVM RF EGB

f;’:;‘;igaﬁons of features and Combination (#dim) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
Fi: H, Hu, HT (55) 95.83 91.58 71.11 66.80 9549 96.62 96.13 98.12 96.23 97.55
LBP, F; (89) 96.13 97.06 8442 71.92 9457 97.16 96.33 98.71 96.83 98.72
HOG, F (119) 9479 93.86 89.96 81.63 9539 96.74 96.35 98.70 96.92 98.76
Haar, F; (136) 94.69 89.80 73.60 70.58 94.89 96.13 96.17 98.28 96.53 98.65
LBP, HOG, F; (153) 9493 9536 85.84 7646 93.79 97.21 96.35 98.80 96.77 98.77
LBP, Haar, F; (170) 9593 9597 85.86 71.84 93.17 96.92 95.83 98.38 96.75 98.73
HOG, Haar, F; (200) 93.59 9234 88.26 79.23 95.11 96.67 96.19 98.36 96.59 98.82
All features (234) 93.59 93.66 86.48 77.40 93.53 97.18 96.61 98.55 96.69 98.69

Table 4 The classification - -

results for CNN architectures Metric CNN Architectures Best E.C

and the best feature combination Proposed LeNet-5 Hybrid
ACC (%) 97.14 96.65 97.26 96.59
AUC (%) 98.84 98.52 99.09 98.82
Time complexity (64 x 64) (s) 0.0053 0.0013 0.0065 0.064
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Fig. 10 Samples of defect detection and localization results; top row: defect candidates (dark (orange) and bright (yellow)) along with probabilities

of defect class, bottom row: final results

Fig. 11 Samples of defect detection and localization results; top row: defect candidates (dark (orange) and bright (yellow)) along with probabilities

of defect class, bottom row: final results

miss any defect. Another error is related to the classification
error for selected ROIs, which is shown in Fig. 11 (rightmost
image). This is happening because we had very few defect
samples for the images with high roughness values and the
network could not have generalized to correctly classify the
selected ROIs in this case. For the rest of the images shown in
Figs. 10 and 11, the network correctly generalized. It should
be mentioned that we have applied both data augmentation
and regularization (using dropout function inside the network
to avoid overfitting) in order to provide better generalization
capability for the proposed network for defect classification.

4 Conclusions and future works

We proposed a novel framework for steel surface roughness
estimation and defect detection, after being processed by a
die-sinking EDM machine. In particular, the proposed frame-
work is able to perform supervised feature extraction directly
from the pixel representation of the steel images using deep

neural networks: this does not require the algorithm designer
to hand-craft features, which is a significant advantage with
visually complex inputs. In addition, a novel ROI selec-
tion algorithm is proposed here based on the morphological
reconstruction and mean shift filtering for defect detection
and localization. Extensive quantitative experiments on real-
world data show that the CNN-based regressor and classifier
we propose outperform state-of-the-art methods using fea-
ture extraction approaches: in particular, we obtain a mean
average percentage error of 7.32% for roughness estimation
and a defect classification accuracy of 97.26%. Our work
shows a new promising application of deep neural networks
for the automation of die-sinking EDM processes. For future
work, we will investigate detecting additional types of defects
and extend the binary classification problem proposed here to
a multi-class case. Adapting the models to higher-resolution
image acquisition systems can also be considered to reach
better results for the roughness estimation and defect classi-
fication.
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