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Human-Swarm Interaction Using Spatial Gestures

Jawad Nagi, Alessandro Giusti, Luca M. Gambardella, Gianni A. Di Caro

Abstract— This paper presents a machine vision based ap-
proach for human operators to select individual and groups
of autonomous robots from a swarm of UAVs. The angular
distance between the robots and the human is estimated using
measures of the detected human face, which aids to determine
human and multi-UAV localization and positioning. In turn, this
is exploited to effectively and naturally make the human select
the spatially situated robots. Spatial gestures for selecting robots
are presented by the human operator using tangible input
devices (i.e., colored gloves). To select individuals and groups
of robot we formulate a vocabulary of two-handed spatial
pointing gestures. With the use of a Support Vector Machine
(SVM) trained in a cascaded multi-binary-class configuration,
the spatial gestures are effectively learned and recognized by a
swarm of UAVs.

I. INTRODUCTION

Without the use of teleoperated and hand-held interaction
devices, human operators generally face difficulties in select-
ing and commanding individual and groups of robots from
a relatively large group of spatially distributed robots (i.e.,
a swarm). However, due to the widespread availability of
cost effective digital cameras onboard UGVs and UAVs, it is
increasing the attention towards developing uninstrumented
methods (i.e., methods that do not use sophisticated hardware
devices from the human side) for human-swarm interaction
(HSI). In previous work, we focused on learning efficient
features incrementally (online) from multi-viewpoint images
of multiple gestures that were acquired by a swarm of ground
robots [1]. In this paper, we present a cascaded supervised
machine learning approach to deal with the machine vision
problem of selecting 3D spatially-situated robots from a
networked swarm based on the recognition of spatial hand
gestures. These are a natural, easy recognizable, and device-
less way to enable human operators to easily interact with
external artifacts such as robots.

Inspired by natural human behavior, we propose an ap-
proach that combines face engagement and pointing gestures
to interact with a swarm of robots: standing in front of a
population of robots, by looking at them and pointing at
them with spatial gestures, a human operator can designate
individual or groups of robots of determined size. Robots
cooperate to combine their independent observations of the
human’s face and gestures to cooperatively determine which
robots were addressed (i.e., selected).

While state of the art computer vision techniques pro-
vide excellent face detection, human skeleton, and gesture
recognition in ideal conditions, there are often occlusions,
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motion-induced blurs, and false positives, which all make
the problem of detecting faces and gestures quite challenging
in practice. Taking these facts into account, we consider an
UAV, the A.R. Parrot flying robot as a reference model. From
the one hand, this means that we are modeling in a 3D
space, and from the other hand, that vision-based recognition
on-board of the robot is intrinsically challenging due to
the motion-induced spatial instability resulting from flying
or hovering. This makes HSI interaction more challenging
compared to that using ground robots. To simplify the task,
we consider that the human wears a pair of colored gloves
and a jacket, where the gloves are used for providing gestures
and the jacket is used to detect body motion.

The main contributions of this work are: (i) a human-
swarm interaction modality based on the use of spatial hand
gestures given with the help of a tangible input device, (ii) the
relative localization and positioning between a human and a
robot swarm based on face detection and the assessment of
face poses, (iii) the definition of a cascaded machine learning
approach for effective spatial gesture recognition, and its use
with the distributed and cooperative classification of hand
gestures for spatial multi-robot selection.

II. RELATED WORK

Being a relatively new area of research, human-swarm
interaction aims on investigating techniques and methods
suitable for interaction between humans and multi-robot sys-
tems. Existing works in HSI have adopted specific problem
scenarios, which have driven the investigation of specific
interfacing mechanisms and modalities [2]. Here, we direct
our attention towards more general distributed sensing and
recognition mechanisms that provide a swarm the distributed
capability to sense audio and visual signals transmitted by
human operators in the proximity.

Existing interfaces [3] for facilitating interaction between
humans and multi-robot systems have typically used com-
puter vision techniques for detecting faces, hand gestures
and human body postures, where audio has been used
in conjunction with vision for multi-modal interfaces. The
majority of the works for selecting multiple robots using
audio/video signals has been carried out by the research
group of Vaughan [4], [5], [6], [7], [8]. In [4], [5] they
developed a gaze detection approach based on face detection
for selecting individuals and groups of robots in multi-robot
systems. Other recent works [6], [7], [8] in this domain have
adopted gaze detection as a mean of face engagement, for
initiating interaction between humans and robots.

Recently, a multi-modal interface to select robots in a
multi-robot system was presented in [7], where gaze de-



tection was used to select robots, and speech recognition
was used for giving commands to robots. We consider using
eye gaze at larger distances to be costly. Instead, a face can
be easily detected at far greater distances. Furthermore, for
localizing a human operator with multiple airborne UAVs, a
visual SLAM-based approach utilizing multiple markers was
adopted in [8]. To overcome the limitations of gaze detection
and marker-based localization, we consider estimating the
pose of the human face [9] with respect a robot’s point of
view, which aids human and multi-robot relative positioning.

A number of research works have promoted the use of
hand gestures [10], [11] as an effective interaction tool for
humans to command and control robots [4], [12], [13], [8].
Recent studies in the field of human-robot interaction (HRI)
have shown that pointing gestures [14] act as a directive
for robots [15] and can be used in machine vision applica-
tions [16]. Thus, in this work we adopt the use of pointing
hand gestures for selecting spatially-situated individual and
groups of robots, based on their spatial arrangement.

The research group of Vaughan investigated the use of ges-
tures, however they detected human-body motion (through
optical flow estimation) in specific (predefined) zones of the
human body, resulting in a vocabulary of 4 motion-based
waiving hand gestures [4], [17], [8]. Our proposed approach
allows human operators to provide more natural and intuitive
gestures, and since in our case gestures are learned and
recognized based on the shape (contour) of the hand, the
gesture vocabulary can be easily expanded.

In the currently existing approach for selecting groups of
robots from a population [4], a human has to draw a circle
(with their finger) around a desired area in front of the robots
to be selected. As tracking a moving hand trajectory and
determining if the face is within the hands circular motion
(circumference of the drawn circle) is a complex process not
suitable for use with large robot swarms, we specify the range
of the group to be selected as the spatial cone in between two
pointing gestures, which provides a more reliable and robust
approach to select spatially-situated groups of robots.

III. MULTI-ROBOT SENSING AND POSITIONING

In the following subsections [II-AHIII-C| we address the
different aspects of the general problem we solve, starting
from the definition of a basic vocabulary of static gestures for
spatial selection of one or more robots from a swarm. Once
the vocabulary is defined we present a method for detecting
and tracking the face [18] of the human issuing the gestures.
Face detection is individually performed by each robot and
allows robots to identify position and visual orientation of
the human operator with respect to them.

In turn, face detection is functional to determine the
relative angular, radial, and altitude position of a UAV with
respect to the human. Once this has been robustly assessed,
robots use this information to coordinate with each other to
move to positions that, if available, allow better individual
views of gestures, as well as the maximization of the mutual
visually sensed information at the swarm level. After this
localization phase is complete, robots in the swarm start

observing the human (i.e., wait for commands encoded in
gestures). In particular, robots wait for spatially situated
commands for selecting one or multiple robots. This is
described in Section [[V] and its subsections.

A. Basic Gesture Vocabulary

The general objective of this work is to allow a human
operator control a swarm by issuing spatial commands for
selecting robots. At this aim, and for the evaluation of the
techniques that will be presented in the following sections,
we formulated a basic two-handed vocabulary of K=4 spatial
gestures. This vocabulary provides spatial gestures (i.e.,
gestures based on angular distance) as basic commands for
selecting individual robots, groups of robots, and all robots,
from a robot swarm using spatial gestures. The vocabulary, as
illustrated in Figure [I] satisfies the criteria of being intuitive
and easy to recognize and understand for a human.

(a) (b) (©) (d)

Fig. 1: The basic two-handed gesture vocabulary for spatially
selecting robots. Gestures to select: (a) individual robots, (b)
group of robots, (c) individuals and groups, (d) all robots.

B. Face Detection and Face Pose Estimation

We adopt the notion of human face detection to create
a normalized and user-centric view of the human from the
point of view of multiple robots. At first, the task of each
UAV in our networked swarm of A.R. Parrot drones is to
detect a human for interaction using its onboard camera.
At this aim, we use the front-mounted cameras of the A.R.
Parrot drones. Image frames acquired from the camera and
flight control data are streamed using ROS onto a Linux
machine via the 802.11 wireless network. Face detection is
then performed using the OpenCV library implementation of
the Viola-Jones face detector [19], a cascaded Haar classifier.

Inspired from the works reported in [7], [17], [4] on using
face engagement for selecting and commanding robots in
a multi-robot system, by setting the Haar classifier face
detector parameter—the number of neighbors each candidate
sub-window should retain—to be maximum, we can estimate
groups of all neighboring sub-windows around a face. Using
the number of detected sub-windows from a detected face
(i.e., the output of the face detector, which is a measure of
the quality of the detected face), the face pose of a human
from a robot’s point of view can be estimated [18]. We also
adopt a face pose estimation system formulated as a non-
linear regression problem which we recently developed [9].
The system uses a set of two Haar face detectors to: (i)
incrementally learn symmetrical face poses (ry) of human
operators through online interactions with the swarm, and
(ii) robustly predict the angular distance (ry,rs) between a



human and a robot. We exploited these properties to compute
the relative distance r; between a human and a UAV (i.e., the
average area of all detected sub-windows around a detected
face). Using the same technique, we also compute the face
centroid (i.e., the average centroid of all detected face sub-
windows) as fc(x,y). We use fc(x,y) as a measure for
human and multi-robot positioning (see Section [[lI-C), which
helps airborne UAVs in maintaining a fixed altitude, based
on the varying height of different human operators.

C. Human and Multi-robot Positioning

When robots do not know where they are located in
the environment with respect to the human operator issuing
commands, the correct understanding of multi-robot selection
is a hard task for the robots. To allow robots to reliably
learn and predict gestures based on their relative point
of view from the human, it requires adjusting the spatial
arrangements (positions) of the robots in the environment,
prior to interaction and robot selection. In practice, it is
not uncommon that some robots are not able to detect the
human’s face or gesture commands due to other robots
obstructing their view. Therefore, to deal robustly with these
potential issues, by exploiting the notion of face poses, the
face score system developed in [9], (in Section[[II-B) can aid
human and multi-robot positioning.

fd=3m 2

S
===y
+ Optimal viewing direction
Helbl 0°

“100

Fig. 2: Spatial arrangements of UAVs for (i) dataset acqui-
sition, and (ii) human and multi-robot localization.

Considering a swarm of r = {1,2,...,N} robots, we adopt
the strategy presented in our previous work [20] for optimal
multi-robot (multi-sensor) positioning, where the goal of
each UAV is to move to a target position that can allow
to optimize swarm’s spatial distribution for the objective of
obtaining robust collective recognition.

1) Angular Positioning (1st Step): With the aim of in-
creasing the amount of the mutual information collectively
gathered by the UAV swarm, the face pose r’¢ predicted by
each robot [9] is used to manoeuvre the rangential position
of a robot by steering the yaw angle r’¢: as soon as the robot
detects the human’s face, it fixates its position in the direction
facing towards the human face.

2) Radial Positioning (2nd Step): With the goal of gath-
ering better quality observations, each UAV selects its radial
position along a semi-circle centered around the human, as

illustrated in Figure [2| This is achieved by computing r’d, and
rﬁl (the distance between the human and the UAV) at every
time step ¢, and using it as feedback for the robot’s attitude
controller to adjust the roll r’w and pitch rf simultaneously
to let each robot place itself: (a) ”15\,—00 degrees apart from
every other robot, and (b) at a distance of approximately
d = 2m from the human. At the swarm level, this results in
the maximization of the angular distance (ry,r4); of each
robot with respect to its closest neighbors.

3) Altitude Positioning (3rd Step): When interacting with
robots that are close to the ground (e.g., when the UAVs are
not flying), it is natural for humans to bend their body and
tilt their head down. However, when the robots are airborne,
their goal is to obtain high face detection estimates [18], [9].
Therefore, at each time step ¢, a robot checks its elevation
component and maintains a fixed altitude r, with respect to
the human. This manoeuvre is performed by minimizing the
Euclidean distance between the face centroid fc(x,y)" and
the centroid of the acquired image, I(xc,yc)" =1(L,/2,15/2)"-

Using these three local mobility rules, at every time step
t each UAV estimates its radial, tangential, and elevation
components and steers its heading (rg;r{l,;rfp) and altitude
(71, in the direction provided by the resultant vector. The
combined application of these rules instructs the UAV swarm
to position itself along a semi-circle at regular angular
intervals surrounding the human (i.e., swarm positioning for
optimal sensing coverage), as shown in Figure 2] (top). The
bottom left and right of Figure [2] depicts similar swarm
formations using 4 and 3 UAVs respectively.

IV. MULTI-ROBOT SELECTION

In this section and its subsections we describe
the second phase, which includes the sensing of the com-
mand gestures, their individual assessment by each robot,
and their swarm-level final classification.

Since between issuing gestures (commands) the human
operator can perform with his/her body, arms, and hands
various movements which are not related to any commands,
the robots first must robustly identify which gestures have
a meaning for them and which do not. We deal with this
issue through the definition of a human body motion detector
based on optical flow, whose main purpose is to acquire and
process only meaningful gestures defined in the vocabulary.

After every robot has understood that the human is issuing
a gesture, this gesture needs to be correctly classified. A
pretrained classifier is used by each robot in the swarm to
produce an individual, probabilistic opinion regarding the
gesture (i.e., the predicting the gesture). By exploiting the
presence of a swarm, in which the robots in parallel acquire,
process, and predict gesture images from different points of
view, a distributed consensus algorithm is employed to fuse
opinions from different views and rapidly reach a swarm-
level agreement about the issued gesture.

As the gestures adopted in this work express spatially-
related entities, robots in a swarm need to understand which
ones among them are being selected by the human. We



address this challenge by building on the information gath-
ered during the first phase (i.e., relative positioning between
the human and the swarm), which allows to estimate the
shape properties (i.e., features) of spatial gestures. Using ges-
tures containing mutually discriminative features, we adopt
a combination of machine learning, distributed information
exchange, and data fusion that robustly allows to swarm to
learn and recognize gestures from multiple points of view.

A. Color-based Segmentation

As we assumed that the human operator wears a pair of
colored rubber gloves and a construction worker’s jacket,
we can conveniently perform color-based segmentation to
segment both the hands and the jacket by exploiting their
individual colors (yellow, green and orange respectively)
in the HSV color space. After segmentation, three binary
images, each corresponding to one of the three colors are
obtained. Using connected component analysis we retain
the largest connected component in each binary image, and
remove all other smaller components (;,I5, I?).

The three binary images are fused together using a per-
element bit-wise logical disjunction operation, that results
in a single binary image I;, comprising the three segmented
components (blobs) corresponding to the two hands and the
jacket. Using I,(x,y), the centroid of both hands and the
jacket (e.g., centroid for green glove (C¥(r),Cy ()) at time )
is determined with respect to the x-y image plane of I,(x,y).
As a final step, by tracing the contour points of the segmented
jacket in I, (x,y), we calculate the lower bound y-coordinate
of the jacket Jy(t). We employ Jy, as a measure for
selecting individuals and groups of robots, (see Sections

TV-F2) and [V-F3).

B. Optical Flow Estimation of Human Motion

In order for a gesture-based interface to be fully acceptable
by humans, it must allow human operators to perform ges-
tures in the same natural way and with the same speed as they
would perform gestures towards another human. Therefore,
it is necessary to take into account that human operators can
perform various “unnecessary” additional movements (with
the hand, the arms, the body, etc.) between the moments they
are issuing “significant” gesture (i.e., gesture encoded in the
specified vocabulary).

The challenge in detecting human motion using airborne
cameras comes from the fact that two sources of motion need
to be taken into account. The first is caused by movements
of the upper human body (i.e., hands, arms, body, and
face), while the second is the due to the rapid ego-motion
of airborne cameras (resulting from UAVs controlling their
altitude). We address these challenges by adopting a strategy
based on measures of optical flow to detect upper human
body motion from a continuous time signal.

To obtain reliable optical flow information, we adopt a
circular ring buffer to simultaneously queue (update and
store) the magnitude of motion computed for the upper hu-
man body. The ring in the buffer comprises of bN elements,
where N controls the amount of damping of motion. For

every acquired image, three Euclidean distance measures,
My, M, M3, are computed and added to the the buffer. They
refer to distances between the centroids of the: (i) green glove
and jacket (M), (ii) yellow glove glove and jacket (M), (iii)
green and yellow gloves (M3).

Computing the difference of the Euclidean distance be-
tween consecutive frames in the buffer for all (i)-(iii) config-
urations, and summing the total, it determines the magnitude
of optical flow M; between the gloves and the jacket. At every
control step ¢, the average optical flow magnitude, referred
to as the motion score, is computed as M, = (Y3_, M!)/3.
Large values of M!_,,, means that a rapid motion is detected
in the upper body region, whereas smaller values indicate
there is a small fraction (i.e., motion is reduced) or no motion
is detected all. In order to detect if upper body motion is
present or not, we introduce a threshold parameter M,,. We
determine M,;, = 1 to be an optimal trade-off to between
small fractions of motion and motions of large magnitude.

Thus, when M!_,., < My, no upper body motion is present.

C. Features Extraction from Gestures

To represent spatial gestures as discriminative features for
classification tasks in machine learning, we adopt an online
incremental feature extraction approach by deriving a set of
Nyear = 30 geometrical shape properties from the contour
(silhouette) of the segmented yellow and green gloves (repre-
sented by IZ and If in Section . These features represent
shapes and geometric properties that have been frequently
used in literature for similar shape recognition tasks [21]
and include properties such as image moments, convexity
defects, roundness, aspect ratio, perimeter etc.

D. Multi-class Gesture Recognition by Single Robots

In order to learn and recognize different gestures in the
vocabulary, we make use of a multi-class Support Vector
Machine (SVM) classifier with non-linear Gaussian (RBF)
kernel. Considering a soft-margin classification problem, we
train a SVM classifier SM in a multi-class setting using
a subset of images from the dataset (see Section [[II-A).
After trained, the SVM supports the analytic concept of
generalization and certainty, and is ready to classify a given
30-element feature vector X, for a problem of K classes.
We estimate the posterior probabilities of each gesture class
using p; = p(y =i|X) for i ={1,...,K}.

For K=4 classes, a classified sample X, returns a 4-
element probabilistic decision vector, rq = [q(i,); - q(ix)]>
constrained by the normalization condition Y& | rq, = 1. As
each UAV in the swarm is equipped with its own SM
classifier, it uses this classifier individually predict the issued
gesture by computing ry = argmaxp{q(il),...7q<l~K>}, where
ry is the gesture class (among the K=4 classes) with the
highest probability in rq. In this way each individual robot
can effectively build an opinion regarding the issued gesture.

E. Distributed Consensus

In order to perform a swarm-level classification, all robots
have to reach an agreement on the issued gesture. Com-
bining individual opinions of predicted gestures with their



probabilistic scores it provides a robust strategy to boost
the overall recognition performance of individual robots. To
rapidly produce a collectively shared classification, we adopt
the distributed consensus protocol developed in our previous
work [20], based on the fusion of the rg from every robot.
By exploiting the notion of distributed sensing to allow the
swarm as a whole to act as a single powerful augmented
sensor, the distributed consensus classifies a given gesture
from multiple points of view with high confidence.

F. Binary-class Spatial Gesture Recognition

One of the core challenges for robots in a swarm is to
determine which robot(s) the human operator is selecting (or
trying to address) using spatial gestures, as the gesture might
be visible to several robots at the same time. We address this
issue by employing a soft-margin binary-class SVM classifier
SB, that determines if the human operator is pointing towards
individual or groups of robots.
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Fig. 3: Segmented images on left and right correspond to
gestures (a) (b) in Figure [T} Top: Images used to train SB; to
select individual robots. Bottom: Images used to train SBg
to select groups of robots.

At this aim, we define a binary-class classification (a two-
class) problem with labels y; € {—1,41}, and use a subset of
the images from the dataset to train two binary SVM classi-
fiers, SB; and SBg for selecting respectively ‘individuals’ and
‘groups’ respectively. The segmented gestures (blobs) used
to train the two classifiers are illustrated in Figure [3| The
images on the top represent the two gesture classes used to
train SB; for selecting individual robots, where the top left
images (i.e., one finger pointing towards a robot; BC=+1)
correspond to one class, while the top right images (i.e.,
finger pointing in all other directions other than towards a
robot; BC=-1) correspond to the other class. Similarly, the
images on the bottom (that use the entire palm for pointing)
belong to the two classes used to train SBg for selecting
groups.

As the binary classifiers (SB;, SBg) return a 2-element
probabilistic decision vector rp = [p(;,), P(i,)] on prediction
of a sample, in order to select one or more individual robots,
or groups of robots from a swarm, robots make use of the
results from SB; and SB¢ based on the algorithmic procedure
of distributed election given below.

1) Selection of Individual Robots: Individual robots are
spatially selected one by one (using gesture (a) in Figure [T
by using an incremental selection approach, as illustrated by
the pseudo-code in Algorithm [I] The selection process is

such that the human operator points to an individual robot
and selects it, then points to another robot and selects it, and
repeats the process until both the hands (gloves) of the human
are below the jacket, i.e., (C§(¢),Cy (1)) < Jmin(t), after which
the selection process is concludes.

By adopting a distributed leader election strategy in
which the robots classify spatial gesture as pointing to-
wards them (i.e., rpc=1; see Figure E} top left), the in-
dividual selection score of each robot is estimated as
rys = ‘p(il) —p(iz)|-(argmaxp{p<il),p<i2)}). The value of ris
and the robot identification number r;; are broadcast as
an ordered pair (r7s, rig) to the rest of the swarm in a
multi-hop fashion. To determine which robot the human
is pointing at, each robot uses its list of received ordered
pairs (including its own selection score), and computes
win __ 1 .1
ring = argmax,, {(rrg,7ig); -, (rf’s,rg])}, where N represents
the number of robots in the swarm and r;; € r};"} corresponds
to the selected individual robot.

Algorithm 1 Incremental Selection of Individual Robots

1: indtotal < 0;
2: if (A == individual) then
3: repeatloop:

4: while (true) do

5: if (Mscore < Myp,) then //Motion detector
6: break; //Exit while loop

7: end if

8: end while

9: fori=1 :N(r}S;rl?d) do //Selection score
10: Compute rj¢ from r{, predicted using rgBl

11: Broadcast rig,r, to robots with rh. =1

12: end for

13: //Highest score selected

. jin _ 11 .
14: r;;l’; = argmax,ls{(rls,rid),...Jr%,rﬁ)},
15: indtotal ++; //No. of selected robots
16: Pause for X seconds; //Create small delay
17: if (C§ > Jyin) then //Check height

18: goto repeatloop;
19: end if
20: end if

2) Group Selection: For selecting groups (or teams) of
spatially-situated robots from a swarm, we adopt a simulta-
neous selection approach as illustrated by the pseudo-code in
Algorithm [2} At this aim, a human operator provides gesture
(b) in Figure |1} which defines a “spatial cone” (or range) with
the use of two hands. In this context, we consider that robots
spatially located within the proximity of both hands are part
of one entire group. As each UAV in the swarm uses its
individual classifier SMg to predict if the left and right hand
(palm) are pointing directly towards it (see Figure |3| bottom
left), the two UAVs which individually have the best view of
the right and left hand pointing towards them respectively, are
marked as boundaries for group selection. In simpler words,
both of the hands of gesture (b) in Figure[T]are used to define
the boundaries of a confined spatial area, where all robots
within these boundaries constitute a group.

In order to be robust, the group selection process must
ensure that when selecting subgroups of spatially-situated
robots, only robots that are within physical proximity of



each other, as well as within the spatial area defined by the
boundaries of both the hands, get selected as a group. At
this aim, only the robots who have classified the gesture as
pointing towards them (i.e., rgc=1) go through a two-stage
selection process. First, all robots who classify both hands
as pointing towards them (see Figure [3] bottom left) ac-
cording to the binary classifier rgp;, compute two individual
boundary selection scores rgg, and rgg, (for the yellow and
green gloves respectively) using Algorithm [I]two times (once
for each hand) This means that, using an individual robot
selection approach, rgg’\‘ and rg’g’; are obtained separately for
both hands (gloves).

Algorithm 2 Simultaneous Selection of Groups of Robots
12 intialselection < 0; grptotal < 0; Gayg < 0;
2: if (A == group) && (Mscore < M) then
3: Obtain (rg”s’;;r’d ) and (rgg;:riq) using Algorithm

4: if rq)(rg?};rid) < r¢(rggé’,;r"1) then

5: Omin = To(rsin) //Angle adjustment
6: Omax = r¢(r§gg)

7: else

8: Omin = ”¢(,~§§;)

9 max = ()

10: end if

11: fori=1:Ndo //Angular distances
12: Compute r4 for each robot in swarm

13: Broadcast (@min; Pmax) to swarm as 2-tuple

14: end for
15: fori=1:Ndo //Group selection

16: if <(r§J > Qynin) &e(r < ¢,,m)) then
17: Include robot rf; in 7/

18: grptotal + +;

19: end if

20: end for

21: end if

In order to estimate the spatial area (range) between the
left and right robots (i.e., the group boundaries), in the
second stage we identify the robots (r;) that have been
selected as ry¢’ and ry¢:, and predict rg for both these robots
(using the face pose estimation system developed in [9]; see
Section with respect to the human on a horizontal
[0,180°] plane. We represent the smaller angle as @,,; and
the larger angle as ¢, Finally, all robots compute their
individual ry, and the robots that lie within the spatial area
defined by the closed interval [@,i,, Omax] are selected as one
entire group, denoted by 7y,

3) Individual and Group Selection: To select individuals
and groups of robots together (see gesture (d) in Figure [I)),
we adopt an incremental and simultaneous selection ap-
proach by using both Algorithm [I] and 2} To make things
simpler we consider that, one hand (e.g., yellow glove) only
gives gestures for selecting groups, while the other hand
(green glove) only gives gestures for selecting individuals.
After a group of robots and an individual robot have been
selected, selection terminates if (Cy(r),Cy(t)) < Jmin(t) (ie.,
both hands are lower than the jacket’s lower-bound y-
coordinate J,,;,(7)). However, if one hand (yellow glove) is
higher than J,;;,(¢), then more individual robots are selected,

while if the other hand (green glove) remains higher then
more robot groups are selected.

In situations when the distributed consensus identifies that
all robots are selected, as indicated by gesture (d) in Figure[I]
all robots provide a feedback response to the human that they
have been selected by flashing their onboard LED lights. This
conveys basic swarm-level information to the human operator
using minimal communication complexity with immediate
impact. Alternatively, locally coordinated movements can
also be used to provide feedback to the human operator. In
the case of individual or group selection, only selected robots
provide feedback to the human operator and subsequent
commands (e.g., to perform a task) are only executed by
the subset of selected (engaged) robots.

V. EXPERIMENTAL RESULTS

To demonstrate and quantify the capabilities of the de-
veloped system |’} we performed experiments to investigate
performance, robustness, and efficiency of the solutions
proposed in Sections [[T]] and [V] At this aim, we first built
a dataset of images using a small swarm of 4 airborne
A.R. Parrot drones equipped with front-mounted cameras
capturing images at a resolution of 1280 x 720 pixels.
Using the 4 drones we acquired a relatively large amount
of images of our gesture vocabulary from multiple points of
view. During dataset acquisition, all acquired images were
labeled (tagged) with their known ground truth information,
which was used to train the gesture classifiers used by the
robots.

To acquire the dataset, the UAVs are positioned around the
human using the multi-robot formation illustrated in the top
of Figure 2] Using this configuration, each robot acquired
and stored approximately 800 unprocessed images while the
human operator for a short time presented gestures directed
towards the robot with the most frontal (optimal) view of
the human face. Given that our vocabulary consists of K=4
gestures, in total the swarm roughly acquired 4 x 800 x
4 images. This process was repeated 5 times, once for a
different distance D = {1,2,3,4,5}m between the UAVs and
the human, which resulted in a dataset of approximately
64,000 images acquired by the UAV swarm from a total
of 4 x 5 = 20 different viewpoints.

A. Sensitivity in Human Motion Detection

To ensure that human and multi-robot interaction is natural
as possible, we study the effect of using different motion
damping values bN on M., the results are reported in

Figure {4l The results show that, if bN is too small, M!_,,
changes very rapidly and is unstable (i.e., the motion score
fluctuates) and too sensitive to be used to detect human body
motion reliably over time. Instead, if bN is too large, the
computed optical flow is slower, meaning that motion will
not be detected on the spot it occurs, but after some delay.

In simpler words, small values (e.g., bN=5) indicate a fast

'A demonstration video of the entire system can be viewed here: |http:
//goo.gl/oT60Ln. In the video, selected robots [ift-off, move and land,
similar to the use of “force” in Starwars movies.
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decay in M., (spikes), whereas larger values (e.g., bN=20)
provide a slower decay rate (steps).

If motion is too rapid or too slow, the way robots perceive
the gesture would cause color-based segmentation errors due
to blur in the images making the system potentially unreli-
able. Therefore, choosing a good estimate of the buffer size
is critical to support the reliability of the motion detection
system. At this aim, we determine using bN with values in
the range of {9, ..,12} provides more a smoother distribution
for detecting upper body motion.
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Fig. 4: Average magnitude of motion M’ for different

score
values of the motion damping parameter bN.

B. Accuracy of Spatial Robot Selections

In order to validate our proposed solutions, we performed
several experiments using different spatial configurations of
individuals and groups of robots. In every configuration,
a human operator attempts to select individual robots (see
Figure[3)) or groups of robots (see Figure [6)). This is emulated
by selecting subsets of images from the acquired dataset
based on ground truth information (spatial arrangements of
robots) and implementing Algorithm [I] and 2} The results
reporting the performance and accuracy of robot selection are
presented as grayscale colormaps. All reported experiments
are averaged over 1000 trials, using images from similar
spatial configurations of the robots on each trial.
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Fig. 5: Gesture classification accuracy for individual robots
in different spatial configurations.

1) Effect of Selection Score on Individuals: First, we
study the effect of the individual selection score s € [0, 1] on
surrounding, non-selected robots. In particular, we consider
two different cases (configurations) in which two individual
robots are selected. In the first case, the two robots are
very close to each other (see Figure [5] right) while in the
second case they both robots are far apart (see Figure [3] left)
from each other. All surrounding robots are uniformly spread
around in the environment.

The gray colormap illustrates the individual selection
scores ryg for all robots surrounding the selected two robots,

where positions (cells) with dark colors represent surround-
ing robots with large values of r;s (as they are very near to the
selected robots) and surrounding robots with light color cells
represent that they are far from the selected robots. These
results show that when robots are within close proximity
of each other the success rate of selecting individual robots
decreases, as expected. This can be avoided by maximizing
the angular distance between each robot, as discussed in the
positioning rules in Section [[II-C).

2) Sensitivity of Boundary Selection Scores: Secondly, we
investigate the sensitivity of the boundary selection scores
rpsy and rpgse on surrounding, non-selected robots. At this
aim, we consider a swarm of N = 14 robots with spatial
configurations of robots surrounding the human, as depicted
in Figure [6] A group of 8 robots (located in the cells with
the blue background) are selected from the swarm using both
hands, while the non-selected robots are placed uniformly in
each one of the remaining cells. The gray colormap presents
the boundary scores for all deployed robots. Dark color cells
represent surrounding robots with similar boundary scores to
that of the group being selected, while surrounding robots in
white cells indicate that they are far from the selected group.
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Fig. 6: Gesture classification accuracy for selecting a group
(team) of robots from a swarm.

The success rate in selecting a subgroup of spatially-
situated robots strongly depends upon: (a) the angular dis-
tance between the robots to be selected, and (b) the distance
to other surrounding neighbors. In situations where a group
of robots that has to be selected is in close proximity to other
groups or individuals, there are high chances that selection
may be incorrect. This is because, in close proximity, g,
and rpg, of nearby robots is similar. To avoid such situations,
the angular position between each robot must be 15° or more
apart from each other.

C. Effect of Swarm Size on Selection and Recognition

Lastly, we investigate the effect of the size of the swarm N
on the gesture recognition accuracy, as well as on multi-robot
selection accuracy, as shown on the left and right of Figure 7]
respectively. The general impact of an increased swarm size
in relation to the recognition accuracy of the multi-class
SVM (SM) and the two binary SVMs (SB; (individuals) and
SBg (groups)), is illustrated on the left of Figure[7] Increasing
the number of robots in the swarm has a positive effect on the
overall gesture recognition performance. Using a swarm size
of N >= 5 robots, gesture classification accuracy obtained
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Fig. 7: Left: Effect of gesture classification performance on the size of the swarm. Right: Impact of individual and group

selection accuracy on the size of the swarm.

from both the multi-class and binary SVMs are greater than
80%. This is expected, as larger swarm always result in
higher recognition accuracy.

The results shown on the right of Figure [7] report the
effect of the swarm size N on the multi-robot selection
accuracy. It is observed that increasing the number of robots
has a negative effect on the selection accuracy (i.e., the
selection accuracy decreases as the swarm size increases).
As a result, relatively large and densely populated swarms
(e.g., N=20) are not robust towards multi-robot selection.
Also, the average selection accuracy of individual robots is
marginally better than that of groups and individuals and
groups, due to the fact that individual robots have a wider
spatial workspace, (i.e., selection of individuals is robust to
a wider set of mutual poses). In simpler words, the spatial
configurations (arrangements) of individual robots have a
reduced effect in relation to the swarm size.

VI. CONCLUSIONS

We presented an integrated vision-based approach for the
problem of selecting individual and groups of robots from
a robot swarm using spatial gestures given by a human
operator. The experimental results, obtained in emulation
using real data acquired from a group of A.R. Parrot flying
drones indicate that the proposed approach for multi-robot
selection and cooperative spatial gesture recognition is robust
and scales well with swarm sizes of up to 20 robots. Future
work will focus on developing a self-contained grammar-
based vocabulary of gestures that can spatially address,
intuitively provide commands, give directions, and naturally
represent quantities, for supporting fully bidirectional inter-
action between humans and robot swarms.
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