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Abstract—Deep neural networks (DNNs) are becoming the
first-class solution for autonomous unmanned aerial vehicles
(UAVs) applications, especially for tiny, resource-constrained,
nano-UAVs, with a few tens of grams in weight and sub-
ten centimeters in diameter. DNN visual pipelines have been
proven capable of delivering high intelligence aboard nano-
UAVs, efficiently exploiting novel multi-core microcontroller
units. However, one severe limitation of this class of solutions is
the generalization challenge, i.e., the visual cues learned on the
specific training domain hardly predict with the same accuracy on
different ones. Ultimately, it results in very limited applicability
of State-of-the-Art (SoA) autonomous navigation DNNs outside
controlled environments. In this work, we tackle this problem
in the context of the human pose estimation task with a
SoA vision-based DNN [1]. We propose a novel methodology
that leverages synthetic domain randomization by applying a
simple but effective image background replacement technique to
augment our training dataset. Our results demonstrate how the
augmentation forces the learning process to focus on what matters
most: the pose of the human subject. Our approach reduces
the DNN’s mean square error — vs. a non-augmented baseline
— by up to 40%, on a never-seen-before testing environment.
Since our methodology tackles the DNN’s training stage, the
improved generalization capabilities come at zero-cost for the
computational/memory burdens aboard the nano-UAV.

Index Terms—Deep Neural Network, Domain Generalization,
Autonomous UAVs, Nano-drones

I. INTRODUCTION

Palm-sized autonomous unmanned aerial vehicles (UAVs)
are rapidly evolving, getting even smarter and faster thanks
to end-to-end deep neural network-based (DNN) algorithms
running directly on their limited onboard processors [1]–[3].
With their agility and reduced form factor, i.e., a few tens
of grams in weight and sub-10 cm diameter, these robotic
platforms (also called nano-UAVs) are ideal candidates for
exploring extremely narrow environments and safely operat-
ing in humans’ surroundings. As an example, DNN-powered
autonomous nano-UAVs have been proven able to explore
indoor environments [2], avoiding collisions with dynamic
obstacles, flying at high-speed [3], and precisely following
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Fig. 1. The palm-sized robotic platform (A) we envision for the deployment
of our work, performing the human-pose estimation task (B).

human subjects [1]. However, to date, one significant limita-
tion of this robotics vision-perception class of solutions is the
lack of generalization capabilities; i.e., the visual cues learned
from the DNN’s training domain result in a model that hardly
predicts with the same accuracy in different environments.
Solving this challenging problem would ultimately lead to
broader adoption of these versatile robotic platforms, making
them operate outside of controlled environments.

Enabling full autonomous navigation on nano-sized UAVs
is an ambitious goal, as they can not rely on any remote com-
putation or off-board aids. Therefore, real-time requirements,
e.g., DNNs’ inference throughput, must be matched using
minimal computational/memory resources due to the stringent
onboard power budget and payload. Since nano-UAVs have
a total power of a few Watts, of which only 5 − 15% is
available for onboard processing [4], this results in a few
hundreds of mW, at most, for the onboard computation. For
this reason, the typical processing device these tiny UAVs
can host aboard is relegated to ultra-low-power (ULP) micro-
controller units (MCUs). Given this challenging scenario, our
search for improved generalization capabilities of DNNs must
aim at methodologies that minimize the onboard demand for
additional computational power and memory.

In this work, we tackle the task of human-drone pose
estimation, training a lightweight DNN for visually estimating
the relative pose of a person from a low-resolution image
acquired by a nano-UAV flying nearby. A standard workflow
for coping with this task [1], [5] involves: i) acquiring training
sequences in a room equipped with a motion capture (mocap)

1

Elia Cereda
This paper has been accepted for publication in the IEEE DCOSS 2021 conference
©2021 IEEE.



system which tracks the absolute pose of both the drone
and the subject; ii) building a set of training instances, each
consisting in a camera frame and the corresponding ground
truth pose of the subject relative to the drone; iii) training
a regression model that, given an input image, estimates the
components of the relative pose. Such workflow perfectly
works when the training domain and the deployment one
match [1], [5]. However, the poor variability of the training
data — always collected in the same mocap-equipped room —
does not promote the DNN’s generalization ability, limiting its
effectiveness in never-seen-before deployment environments.

This problem can be mitigated at the price of the additional
complexity of the onboard intelligence, such as by augmenting
the in-mission inference with methods of uncertainty esti-
mation [6]. This family of solutions improves the system’s
generalization capability, for example, by assessing the level of
confidence on the prediction of an ensemble of DNN models,
speculating multiple predictions via on-the-fly data augmenta-
tion of the input image [7]. Despite the proven efficacy of these
techniques, their price in additional in-mission computation
and memory is a hard match for the available resources aboard
nano-UAVs.

A second strategy to improve the DNN’s generalization
capability, which is widely used in traditional computer vision
and machine vision tasks (e.g., object detection/classification),
relies upon increasing the number and the variability of
environments represented in the training samples. Thanks to
relatively simple labels and the massive availability of in-the-
wild images/labels, this approach has shown great potential
when abundant public datasets [8], [9] are available. However,
this solution hardly applies to robotics tasks, such as ours,
as they require precise physical-world labels that cannot be
collected without expensive ad-hoc infrastructure, such as a
mm-accurate mocap system.

One common approach to overcome this limitation consists
in generating training datasets in simulation [10], which en-
ables the acquisition of huge amounts of data with known
ground truth. In this case, one can leverage domain ran-
domization techniques [11], which promote generalization by
programmatically randomizing various aspects of the simu-
lated environments. Nevertheless, learning exclusively from
simulated data suffers from the well-known simulation-to-
reality gap [12], with no guarantee that the resulting models
will work in the real world. Moreover, either with real-world
training data or a simulated one, the need for expensive ad-
hoc infrastructure — the same used for acquiring the real-
world data — is unavoidable for precise and quantitative final
evaluation.

The main contribution of this work is a novel methodology
of dataset augmentation to improve the generalization capa-
bilities of a state-of-the-art (SoA) DNN — named PULP-
Frontnet — for human pose estimation on nano-UAVs [1].
This DNN has been proven to enable autonomous navigation
within the limited computational power aboard a Crazyflie 2.1

nano-quadrotor1 extended with a commercial ULP multi-core
System-on-Chip (i.e., the GreenWaves Technologies GAP82),
making the nano-UAVs capable of following a free-moving
person. In this work, we improve the PULP-Frontnet gener-
alization ability, adopting a novel augmentation methodology
inspired by domain randomization [11]. The proposed method-
ology hinges on: i) segmenting the images of the PULP-
Frontnet training dataset, to obtain a binary mask of pixels
belonging to the closest person to the camera; ii) employing
such a mask to substitute the image background with a random
one from a large collection [9], resulting in a new augmented
dataset which we use to retrain the PULP-Frontnet DNN.

Our results demonstrate improved generalization perfor-
mance of the augmented DNN, w.r.t. the original PULP-
Frontnet, when predicting human poses on a never-seen-before
test dataset, collected in a different place from the one used
for training. Our model shows a reduced mean squared error
(MSE), compared to the PULP-Frontnet baseline, with a peak
reduction of almost 40%. Similarly, the R2 metric on the
DNN’s output improves from 0.09 to 0.45. Ultimately, since
our approach exclusively focuses on the training phase of the
DNN, the improvements on the model’s generalization come at
zero cost on the final nano-UAV, maintaining the same real-
time performance of the original PULP-Frontnet, i.e., ∼20-
48 frame/s within ∼25-96mW.

The rest of the paper is structured as follows: Section II
introduces the SoA in both autonomous navigation for nano-
UAVs and DNN generalization; Section III presents the pro-
posed method and its integration in our data augmentation
pipeline; Section IV shows our experimental evaluation; fi-
nally, Section V concludes the paper.

II. RELATED WORK

Methodologies based on deep learning have become the
leading approach for solving autonomous navigation tasks on
nano-UAVs [1]–[3], [13]–[15], as the computational/memory
requirements of more traditional approaches, such as the
localization-mapping-planning cycle [16], would result unaf-
fordable for the onboard processing power of this class of ve-
hicles. When autonomous navigation capabilities come to the
nano-size class of UAVs, there are three main categories of so-
lutions: i) offloading the computation to some external power-
unconstrained base-station [13], [17]; ii) reducing the onboard
workload’s complexity to minimal functionalities [14]; iii)
extending the onboard brain either through application-specific
processors [18] or general-purpose ULP heterogeneous multi-
core SoCs [1]–[3].

Relying on powerful off-board computers is a proven
strategy to demonstrate advanced capabilities in UAVs of
all sizes, and in particular on resource-constrained nano-
UAVs [13], [17]. For example, obstacle avoidance has been
demonstrated on nano-UAVs, taking advantage of vision-based
DNNs running on wireless-connected commodity laptops [13].

1https://www.bitcraze.io/products/crazyflie-2-1
2https://greenwaves-technologies.com/gap8 gap9
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Fig. 2. Architecture of the original PULP-Frontnet convolutional neural network [1].

Similarly, in [17], a fuzzy logic position controller and vision-
based position estimator have been demonstrated on a nano-
drone, offloading all the intensive computation to a powerful
Intel i7 processor via radio streaming of the images acquired
on board. However, this category of solutions shows multiple
drawbacks on the communication channel, such as latency,
noise, and security vulnerabilities, but also on the UAV’s
power budget, with the power consumption overhead for the
radio streaming [19].

Given the typical computational unit available aboard a
commercial-off-the-shelf nano-UAV, many solutions pay a
severe price on the system’s functionalities due to the absence
of sufficient computing power, as the onboard device is limited
to simple single-core MCUs [14], [20]. In [14], a DNN is
proposed to improve the localization accuracy on the z-axis of
a nano-drone swarm utilizing sensor biases from a localization
infrastructure. Despite the effectiveness of the proposed solu-
tion, the onboard processing device (i.e., ARM Cortex M4)
relegates the workload to a simple DNN (i.e., ∼27 kMAC per
inference), which leads to a prediction capability of the only
z-component of the drone’s pose. Similarly, also in [20], the
visual DNN proposed for improving the localization accuracy
of a nano-drone runs on the onboard ARM Cortex M4 MCU,
which restricts the computational burden to 2.7 kMAC/frame
to run in real-time (200Hz). Compared to the complexity
of the vision-based DNN we refer to in this work [1], i.e.,
14.1MMAC/frame, the DNNs in [14] and in [20] require,
respectively, three and four orders of magnitude fewer opera-
tions per inference.

The last class of solutions for enabling complex autonomous
navigation algorithms on nano-sized UAVs is embodied by
the extension of the onboard computational unit either with
application-specific integrated circuits (ASICs) [21] or adopt-
ing general-purpose ULP multi-core SoCs [1]–[3]. Co-design
of custom hardware and algorithms can enable significant
breakthroughs, such as in [21] where a high complexity
visual simultaneous localization and mapping (SLAM) task is
addressed in a highly tight power envelope (24mW). However,
ASIC designs are costly and feature fixed/limited autonomous
navigation functionalities, handling only part of the overall
system’s needs. Therefore, they can only be employed as a
co-processor of less energy-efficient devices. General-purpose
ULP multi-core SoCs, conversely, have the advantage of
delivering high compute performance within a limited power
budget while retaining flexibility thanks to their programmable

nature. The GAP8 SoC, which we also refer to in this work,
is the commercial embodiment of the parallel ULP (PULP)
heterogeneous paradigm [22]. Its “workhorse” capabilities
have already been demonstrated aboard nano-drones, execut-
ing complex DNNs [2], [3] for lane-detection and obstacle
avoidance tasks (6 frame/s, 40MMAC/frame @ 64mW), as
well as the PULP-Frontnet DNN [1] this work is based on
(20 frame/s, 14MMAC/frame @ 25mW).

Even assuming unbounded computational power aboard
UAVs, ensuring that DNN models perform well when de-
ployed in the real world remains challenging. One crucial
aspect is that of generalization: training models that perform
well in environments different from those shown in training
data. Many of the breakthroughs of deep learning in computer
vision have achieved this through a large-scale in-the-wild
collection of training data followed by manual annotation by
humans [8], [9]. In the context of robot perception, this is
not always feasible: most applications require task-specific
datasets, so the amount of available data is often limited.

The simulation-to-reality transfer is a common strategy to
sidestep the scarcity of real-world data. SoA results have been
achieved by augmenting simulation-only training data with
techniques of domain randomization [11], [23], even obtaining
strong generalization to real life without any fine-tuning on
a physical drone [10]. But building faithful simulations of
the desired task is far from straightforward in many cases
and requires significant development effort specific to the
task itself. This is especially true for simulations involving
complex physical interactions (such as soft objects, deformable
ground, etc.) or, as in our case, when humans are involved. In
fact, humans’ appearance and their clothes require nontrivial
modeling effort, and their motion and behavior are complex
and difficult to predict.

Halfway between real data and the entirely synthetic data
from simulators is data augmentation, a standard technique in
deep learning to improve the generalization of DNNs. Starting
from a real-world training set, it artificially increases the
amount of data by randomly perturbing copies of each training
instance so that the corresponding labels are not affected.
Various augmentation strategies have been devised [24], the
most common being to apply geometric transformations and
color adjustments [25] or to erase parts of the image [26].
Recently, machine learning approaches have been proposed to
explore automatically image augmentation strategies [27].

Our approach brings domain randomization to real-world
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Fig. 3. Top row: original PULP-Frontnet training frames with object detection and segmentation (colored masks). Bottom row: resulting images after applying
the background randomization.

data as a step in our data augmentation pipeline. A pre-trained
Mask R-CNN [28] is used to extract a segmentation mask
of the foreground person in each camera frame, which is
then used to composite the person onto a random background
selected from the Indoor Scene Recognition dataset [9]. Our
methodology shows a significant improvement (up to 40%)
w.r.t. the original baseline without domain randomization
when a never-seen-before environment challenges the DNN’s
prediction.

III. METHODOLOGY

A. PULP-Frontnet and robotic platform

Our work leverages the PULP-Frontnet [1] convolutional
neural network (CNN), a SoA DNN model for the human
pose estimation task demonstrated on PULP processor. The
model takes as input gray-scale low-resolution images from
the camera onboard the nano-drone and produces as regression
output the relative pose of the human subject w.r.t. the drone.
The pose is composed of four independent variables, which
correspond to the position components, represented as a point
in 3D space (x, y, z), and one orientation component, the
rotation angle w.r.t. the gravity z-axis, called φ or yaw. Relative
rotations along the roll and pitch axes, on the other hand, are
not considered by the model.

The CNN topology, shown in Figure 2, adopts the estab-
lished pattern in which each convolution layer is followed
by batch normalization and a ReLU activation function. The
model is composed of seven convolutional, one max-pooling,
and one fully connected layer. The first layer is a 5×5 stride-
2 convolution, followed by a 2 × 2 max-pooling layer, both
of which reduce the size of output feature maps by 4×. The
central part of the CNN contains three repeated blocks, each
composed of two 3 × 3 convolutions that double the number
of output channels and divide the feature map size by 4×,
each. Finally, dropout is applied for its regularization effect,
followed by a fully connected layer that predicts the four
regression outputs.

The reference deployment platform for both PULP-Frontnet
and this work is a COTS palm-sized UAV, the Bitcraze

Crazyflie 2.1 nano-quadrotor. It is open-hardware and open-
source, and its large community makes it ideal for research.
It can be coupled with a COTS pluggable printed circuit
board (PCB) called AI-deck3, to increase the onboard com-
putational/memory resources. This PCB plays a crucial role
in extending the drone’s perception capabilities, providing a
monochrome ULP Himax HM01B0 camera capable of deliv-
ering QVGA images at 60 frame/s with a power consumption
of ∼4mW. In addition, the AI-deck provides unprecedented
computational power for a nano-drone through a PULP-based
GWT GAP8 octa-core SoC that peaks at about 2GOp/s.
Lastly, this expansion board offers additional off-chip memory,
i.e., 8MB DRAM and 64MB Flash storage, and an ESP32
WiFi module that allows real-time streaming of camera images
to a computer, easing the dataset collection process.

Ground-truth data used to train the PULP-Frontnet model
is acquired in a room equipped with a motion capture system.
Ten sequences are recorded, each featuring a different human
subject moving around the scene. The raw, gray-scale, 160×
160 pixels images acquired from the drone’s onboard camera
are streamed to a nearby base station using the Wi-Fi module
on the nano-drone and stored together with the drone’s and
human subject’s absolute poses captured by the mocap system.
After the recording is complete, the four-dimensional relative
poses (x, y, z, φ) of the subject w.r.t. the drone, are computed
for each image. Of the ten recorded sequences, four are kept
to form the test set. This ensures that subjects are entirely
disjoint between training and test set. The other six sequences
are further split, randomly holding out 20% of their frames
as a validation set and using the remainder as the training
set. Training is performed over 100 epochs using the Adam
optimizer (learning rate 10−4) to minimize the L1 loss for the
4-component relative pose, (x, y, z, φ).

The PULP-Frontnet architecture is optimized to take advan-
tage of the computational capabilities of the GAP8 SoC. Due
to the absence of a dedicated floating-point unit, deployment
on this platform requires a quantization step so that inference
can be efficiently performed using 8-bit fixed-point arithmetic.
In this work, we use the 160× 32 version of PULP-Frontnet

3https://www.bitcraze.io/products/ai-deck
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Fig. 4. A) An image sample from the original PULP-Frontnet dataset. B) Samples of the only data augmentation procedure without (w/o) background
randomization. C) Sample images of the entire pipeline including the background randomization.

DNN, which has 303 k parameters and requires 14.1MMAC
and 499 kB of memory to perform inference on a single frame.
PULP-Frontnet throughput peaks at 48 frame/s within 96mW
power consumption, an energy efficiency of 2mJ/frame.

B. Background replacement

To enable our augmentation pipeline (Section III-C), we
perform object instance segmentation on the PULP-Frontnet
training dataset employing the SoA model Mask R-CNN [28].
This process partitions a digital image into semantically con-
sistent regions (i.e., groups of pixels), detecting the various
“objects” visible in the scene. For every object in the input
image, Mask R-CNN returns:

• the semantic class of the object (e.g., person, animal),
i.e., the result of a classification process;

• the bounding box, i.e., the rectangle containing the
object and defining its location and dimensions inside
the image;

• the binary segmentation mask, marking which pixels
inside the bounding box actually belong to the object.

Mask R-CNN’s classification domain — the classes of
objects that it can detect — depends on its training dataset. For
this purpose, we use the Microsoft COCO [8] dataset, which
contains the “person” class among ten others, spanning from
animals to daily-life objects, vehicles, and more. Therefore,
Mask R-CNN, trained on the COCO dataset, acts in our
pipeline as a “person-detection” CNN (as shown in the top
row of Figure 3), which is of paramount importance given our
ultimate goal of human pose estimation. Contrary to simpler
semantic segmentation models [29], we selected Mask R-CNN
due to its capability to isolate every single instance of the
same class; for example, multiple persons in the same scene
are identified as separate objects. Finally, the “person object”
with the biggest bounding box in the image is selected to
be the subject of the relative pose prediction. All remaining
pixels outside the human subject’s binary mask are considered
“background”, including all “non-person” objects and other
persons with smaller bounding boxes.

Once we have marked, for every image of the PULP-
Frontnet training dataset, the pixels corresponding to the
human subject and those referring to the background, we
proceed with background replacement. Using the Indoor Scene
Recognition [9] dataset, which features 15’620 images from
67 categories of indoor environments (e.g., homes, stores,
libraries, and working places), we replace the background on

all images. We first resize the new background image to have
160 pixels on the smallest dimension (e.g., the height) while
preserving its aspect ratio. Then we crop it to 160 × 160
pixels, and lastly, we paste the human subject onto the new
resized and cropped background image, using standard com-
positing operation. This process of background replacement is
performed only once before training the PULP-Frontnet DNN
to minimize the computational overhead. An example of the
result of our background randomization pipeline is reported in
the bottom row of Figure 3.

C. Data augmentation

Our data augmentation pipeline runs during the PULP-
Frontnet DNN training, performing the following three steps
for each training batch of images:

• Background randomization: as described in Sec-
tion III-B, we randomly replace the background in all
160×160 gray-scale input images of the original training
dataset while keeping the identified human subject in the
foreground.

• Pitch augmentation: we crop each “background-
randomized” image at random image’s height, passing
from an input size of 160 × 160 pixels to the target
resolution of 160 × 96 pixels. This approach simulates
variations in the pitch of the drone: for example, cropping
a 96-rows image aligned to the top of the input image
approximates a +14° pitch w.r.t. the same cropping but in
the center of the image. As the training dataset has been
acquired with the nano-drone mounted on a movable cart
at a fixed pitch [1], this augmentation brings the pitch
variance of the training set closer to the one seen during
the actual flight.

• Photometric augmentation: to increase the robustness of
our DNN model, we introduce additional photometric and
optical augmentation, which includes exposure, gamma
correction, dynamic range reduction, blur, and additive
noise, followed by a vignetting effect with random inten-
sity, as depicted in Figure 4. Ensuring the presence of the
vignetting effect also after the background replacement
is particularly useful to match the photometric properties
of the low-resolution camera used to collect the original
training set, which is also the one available on the final
deployment nano-drone.

Like in [1], we apply these transformations generating ten
new images from every input one, where all the augmentation
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Fig. 5. For each output variable (rows), we report the ground truth and predictions for Aug (black) and BgAug (blue) models. Scatter plots on the left
compare ground truth (x axis) to predictions (y axis) of the two models on all frames in D3. Line plots on the right show a time series of the ground truth
(thick green) and the two predictions (Aug: dashed black thin line; BgAug: blue thin line) for a 20 s segment from D3.

parameters (e.g., background, pitch, gamma correction, etc.)
are randomly selected every time. Therefore, we increase the
training dataset from 2’629 to 26’290 images in each epoch.
Lastly, since we rerun the whole augmentation procedure for
each training epoch, the ultimate number of different images
grows up to 2’629’000 when iterating over 100 epochs, like
in our case.

IV. EXPERIMENTAL RESULTS

A. Dataset and DNN training
We consider two different environments (EnvA and EnvB)

for our experiments, both equipped with a 12-camera Opti-
Track motion capture system. Both environments are indoor
laboratories of a similar size (approximately 10× 10 meters);
still, they have significantly different physical characteristics,
such as walls, furniture, floor texture, ceiling colors, and
lighting, as shown in Figure 6. We record several camera
sequences featuring different human subjects moving around
the scene in each environment and employing the QVGA gray-
scale camera available on the target nano-drone. We manually
handle the drone, keeping the subject inside the camera’s
field of view while capturing different parts of the room as
backgrounds. In EnvA, the drone rests flat at a fixed altitude
on a cart that is pushed around (so to enforce a constant pitch
of almost 0°), while in EnvB, we move the handheld drone
freely in space, constantly changing its pitch and roll, to mimic
in-flight conditions.

The raw, gray-scale, 160 × 160 pixels images acquired
by the drone camera are streamed to a PC via the onboard
WiFi and stored together with the absolute poses of the drone
and the subject captured by the motion tracking system, both
running at the same frequency (i.e., 60Hz). After recording,

for each image, we compute the four-dimensional relative
pose (x, y, z, φ) of the subject w.r.t. the drone, and we extend
the PULP-Frontnet original dataset, resulting in three disjoint
datasets:

• D1: is the original PULP-Frontnet training and validation
dataset (2’629 images);

• D2: is the original PULP-Frontnet test dataset (1’119
images);

• D3: is a new test dataset (8’737 images), collected in a
never-seen-before environment.

D1 and D2 are acquired in EnvA with two different sets of
subjects, instead D3 is acquired in EnvB, with yet another set
of subjects.

In the following, we use the D1 dataset to train two CNN
regressors, which differ only by the type of augmentation
applied during training:

• Aug: the baseline approach introduced in [1], which only
uses pitch and photometric augmentation;

• BgAug: our approach which combines both background
randomization, and pitch/photometric augmentation.

Fig. 6. A) Sample image from dataset D1 in EnvA and B) a sample image
from D3 in EnvB.
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TABLE I
MAE AND MSE REGRESSION PERFORMANCE FOR AUG AND BGAUG

MODELS.

Network MAE [·10−3] MSE [·10−3]

x y z θ x y z θ

Aug 464 231 128 492 362 125 52 502
BgAug 321 182 153 436 218 95 62 419

The two models use the same lightweight architecture intro-
duced in PULP-Frontnet (named 160 × 32) and discussed in
Section III-A. The two models are trained for 100 epochs
(without early stopping) on a dedicated workstation equipped
with Nvidia GeForce RTX 2080 Ti GPUs. The training data
are split into 329 batches for each epoch, with each one
containing 64 images randomly sampled from D1 and aug-
mented using either the Aug or BgAug strategy. On average,
the models see ten randomly augmented versions of each of
the 2’629 training images during one epoch. 20% of samples
are kept for validation from the training set, being manipulated
with the same augmentation strategy we use for training.

Since the proposed methodology only affects the training
process, during inference, both models have the same ex-
ecution time and power consumption, identical to those of
the original PULP-Frontnet 160 × 32 model [1]. As we can
configure the GAP8 SoC’s frequencies to best match the
application’s needs, the models’ throughput can span from
∼20 to 48 frame/s within ∼25 to 96mW, respectively. This
leaves enough computational/memory headroom on the GAP8
SoC for additional tasks to run together with the proposed
augmented PULP-Frontnet.

B. Regression performance

In the following, we present a quantitative analysis of the
two models, i.e., Aug and BgAug, on both D2 and D3 test
datasets. The scatter plots, on the left of Figure 5, compare,
for each output variable (rows), the relationship between the
ground truth and prediction of each of the two models on all
frames of D3. Furthermore, it also shows the evolution of these
variables for a 20 s segment of D3. Additionally, we report in
Table I the regression performance for the same dataset D3,
in terms of mean absolute error (MAE) and mean squared
error (MSE). We observe that, qualitatively, predictions from
BgAug match the ground truth more closely than predictions
from the Aug model, scoring a lower MAE and MSE for all
output components except for the z one, where BgAug shows
a slightly increased error (MAE from 0.13 to 0.15 and MSE
from 0.05 to 0.06).

This observation is further quantified in Figure 7, which
reports the R2 metric for each output variable (x, y, z, φ)
of each model, for both D2 and D3. The R2 value indicates
the fraction of variance in the target variable that the model
explains; it reaches 1.0 for an ideal regressor, whereas it has a
value of 0.0 for regressors that consistently predict the average
of the target variable on the testing set. As expected, for both
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Fig. 7. R2 on D3 (bars) and D2 (diamonds) for each output variable (y-axis)
for Aug (black) and BgAug (blue) models.

models, the performance on D2 (diamonds) is always better
(higher R2 score) than in D3 (bars) — for all four outputs.
This results from the higher similarity of the test set D2 to the
training one (D1), both acquired in EnvA.

Focusing only on D2 (Figure 7, diamond markers) back-
ground augmentation (BgAug) is surprisingly beneficial for
the x, φ outputs, while it reduces the performance on the
other outputs. The small reduction in performance on the x
output (i.e., the subject’s distance) is in the expected order of
magnitude, i.e., from 0.83 to 0.71, as Aug has been trained
exclusively on EnvA: the same environment of the test set D2.
Instead, the drop in performance on the z variable requires a
more thorough discussion, as the R2 score drops from 0.58 to
0.31.

To explain this, we note that because of pitch augmentation,
estimating z from a single image (without any explicit input
representing the actual pitch at which it was acquired) is very
challenging. For example, observing the subject’s head in the
bottom part of the image might mean either that the head is
lower than the quadrotor (z < 0), while the quadrotor has
a 0° pitch, or that the head is at the same height as the
quadrotor (z = 0), while the quadrotor has a positive pitch
(i.e., is looking up). Thus, we hypothesize that the model,
to predict z better, indirectly learns to estimate the camera
pitch from the image background. This approach works well as
long as the background is consistent between the training and
evaluation datasets (e.g., for the Aug model in D2). When this
is not true, e.g., with background randomization, performance
on the z output deteriorates. In practice, precise estimation
of the subject’s relative height is not critical for most real-
world applications, such as those where the altitude needs to
be constant or obtained through other means.

Lastly, focusing on D3 (Figure 7, bar markers), i.e., the most
challenging never-seen-before test set, BgAug outperforms
Aug for x, y, and φ variables, confirming the effectiveness of
the proposed approach. Even in this case, BgAug performance
on the z component is marginally lower than Aug, i.e., from
0.07 to -0.09. Overall, the D3 test set performance shows that
the proposed augmentation pipeline (including the background
randomization) increases the model’s generalization capabili-
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ties to different environments and its robustness to varying
pitch and roll of the camera.

V. CONCLUSIONS

In this paper, we tackle the limited generalization capabili-
ties found in DNN-based visual pipelines for autonomous nav-
igation. This DNN-based class of solutions is rapidly getting
adopted among nano-UAVs, as the computation/memory re-
quirements are lower than more traditional visual pipelines for
autonomous navigation (e.g., SLAM) and, therefore, a better
fit for their resource-constrained MCUs. However, one severe
limitation of this class of solutions is the lack of generalization
capabilities, i.e., the visual cues learned on the specific training
domain hardly predict with the same accuracy on different
ones. This work introduces a novel data augmentation method-
ology based on background randomization and image aug-
mentation for training a visual human pose estimation CNN
for autonomous UAVs. Experimental results on data from
two different environments show that the augmented DNN
yields better generalization ability than a baseline without
background randomization. Our approach reduces the DNN’s
mean square error — vs. a non-augmented baseline — up to
40%, on a never-seen-before testing environment, with zero-
impact on the computational/memory/power burden aboard the
nano-UAV. As the next step in the evolution of our work,
we envision the in-field deployment of our augmented DNN,
to perform further evaluation of the control accuracy of our
closed-loop nano-drone, challenging it with a wide range of
different environments (both indoor and outdoor).
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