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ABSTRACT

Variations in the pitch of a Micro Aerial Vehicle
affect the geometry of the images acquired by its
on-board cameras. We propose and evaluate two
orthogonal approaches to handle this source of
variability, in the context of visual perception us-
ing Convolutional Neural Networks. The first is
a training data augmentation method that gener-
ates synthetic images simulating a different pitch
than the one at which the original training image
was acquired; the second is a neural network ar-
chitecture that takes the drone’s estimated pitch
as an auxiliary input. Real-robot quantitative
experiments tackle the task of visually estimat-
ing the pose of a human from a nearby nano-
quadrotor; in this context, the two proposed ap-
proaches yield significant performance improve-
ments, up to +0.15 in the R2 regression score
when applied together.

1 INTRODUCTION

In autonomous MAVs, convolutional neural networks
(CNNs) are frequently adopted to process on-board camera
images to solve perception problems [1, 2, 3, 4]. This is espe-
cially true in nano-sized MAVs (i.e., sub-10cm span and few
tens of grams weight), where tight computational and mem-
ory resources highly constrain the affordable methods.

To achieve consistent performance, these CNNs must be
robust to sources of variability that may occur during deploy-
ment. One such example is the continuously-changing ori-
entation of the camera, caused in quadrotors by pitch and
roll changes required to generate accelerations; while larger
drones feature mechanically, optically or electronically stabi-
lized cameras, this is not the case for nano-quadrotors.

In this work, we consider the task of human pose esti-
mation, leveraging the PULP-Frontnet CNN [4] to visually
estimate the relative pose of a person from a low-resolution
image acquired by a nano-quadrotor flying in its proximity.
To ensure good performance in the field, this model should
be as insensitive as possible to changes in drone attitude.

As a main contribution, we propose an ad-hoc training
data augmentation method that synthesizes images as if ac-
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quired from a different pitch than the one at which the orig-
inal image was acquired; this improves robustness to drone
pitch changes with no impact on inference time; the approach
is therefore well suited for deployment on nano-quadrotors.

As a secondary contribution, we propose to provide the
camera pitch angle as an auxiliary input to the CNN, to fa-
cilitate its perception task. In fact, a good pitch estimate is
always available from the quadrotor’s inertial measurement
unit (IMU) and state estimation subsystem; because pitch af-
fects the observed image geometry, we hypothesize that its
knowledge helps the model to correctly interpret the image
data. Similarly, neuroscience research [5, 6] found that infor-
mation from the vestibular system, which encodes the orien-
tation of the head, contributes to the human visual perception.

After reviewing related work (Section 2), our contribu-
tions are described in Section 3. In Section 4 we describe
our experimental setup; in Section 5, quantitative experiments
demonstrate significant benefits of both our proposed contri-
butions.

2 RELATED WORK

Camera images, like most high-dimensional data, often
allow for large-scale variations which nonetheless have no
impact on the image’s semantic content, depending on the
task being considered. For example, illumination or image
exposure changes should not affect an object classification
pipeline. To build systems invariant to such semantically-
irrelevant changes, two high-level approaches are commonly
used: i) normalization and ii) data augmentation.

Normalization eliminates a source of variation altogether
by bringing input images to a single canonical representation.
For illumination, this corresponds to equalization algorithms
such as CLAHE [7]; to compensate camera movements, dig-
ital, optical, and mechanical stabilization methods exist [8].
Image stabilization has been widely deployed in computer vi-
sion, including in MAV applications: e.g., the Parrot Bebop 2
uses digital stabilization, whereas the DJI Phantom 2 relies on
a mechanical gimbal. Its main drawback is cost at runtime,
whether in computational power or in mechanical complexity,
which, to this date, prevents adoption on nano-sized MAVs.

Alternatively, CNNs can learn arbitrary invariants when
they are sufficiently represented in the training data. As real-
world data is typically scarce, especially in robot applica-
tions, deep learning pipelines make extensive use of data aug-
mentation for this purpose: available data is artificially in-



Figure 1: Human pose estimation task and reference frames.

creased by randomly perturbing copies of each training in-
stance with transformations that do not affect the correspond-
ing target variables. Being applied only at training time, aug-
mentation is ideal for applications with tight resource con-
straints at inference time, such as nano-drones.

A rich data augmentation literature exists [9]. Generic
photometric adjustments that simulate illumination changes
are some of the most widely applied, together with small-
scale geometric perturbations [10]. Task-specific augmenta-
tion strategies have also been proposed: domain randomiza-
tion to improve generalization to unseen environments [11,
12]; view synthesis to increase the density of camera poses
for visual localization and semantic segmentation [13, 14];
meta-learning approaches allow automatic task-specific fine-
tuning of augmentations [15]. Our proposed pitch augmenta-
tion technique can be seen as a constrained version of view
synthesis, which deals exclusively with camera orientation
changes along the pitch axis.

Directly-measurable sources of variations allow an addi-
tional, orthogonal strategy: the current state can be fed as an
explicit additional input to the CNN (vision-state fusion). In
robotic control-oriented tasks and in egocentric spatial per-
ception tasks, where the output refers to the system itself, this
is an established practice. Abbeel et al. [16] use a drone’s
linear and angular velocities as the only inputs of a learned
model that performs acrobatic maneuvers; more recent con-
trol approaches integrate the state and visual features in a sin-
gle neural network [17]. Egocentric visual-inertial state esti-
mation uses camera images and the robot’s velocities and ori-
entations measured by an inertial measurement unit (IMU),
either through a sequence-to-sequence recurrent neural net-
work that fuses the two input sequences and produces the
sequence of egocentric poses [18, 19], or through a feed-
forward architecture that takes an inertial initial motion es-
timation and refines it using the visual feed [20].

In this work, instead, we consider human relative pose es-
timation: an allocentric spatial perception task, whose output
is external to the robot. Current CNN-based approaches for
this class of problems rely exclusively on visual inputs [4, 21]
but, for them too, recent advances show benefits when ex-
ploiting additional state information [22]. We evaluate a mod-
ified CNN architecture that receives the current pitch as addi-
tional input from the drone’s onboard state estimation.

Figure 2: Pitch augmentation technique and example images.

3 METHOD

3.1 Application

The reference application for our work is human pose es-
timation aboard the Crazyflie 2.11 27-gram MAV by Bitcraze,
coupled with the AI-deck pluggable extension board which
provides a Himax HM01B0 gray-scale QVGA camera and a
GreenWaves Technologies GAP8 ultra-low power multi-core
system-on-chip (SoC). We leverage the PULP-Frontnet con-
volutional neural network, a field-proven model which takes
one gray-scale 160×96px image and estimates the pose of the
human subject relative to the drone (see Figure 1). The model
produces four independent regression outputs, which repre-
sent the Cartesian coordinates of the subject’s position in 3D
space (x, y, z) w.r.t. the drone’s horizontal {base} frame and
the subject’s relative orientation w.r.t. the drone’s yaw, ϕ. In
this work, we focus on the position components (x, y, z).

To train our models, we employ ground-truth data col-
lected in rooms equipped with a motion capture (mocap) sys-
tem. Images streamed from the drone’s camera are stored
together with the corresponding drone’s and subject’s abso-
lute poses, as recorded by the mocap system, and the drone’s
attitude, computed by onboard state estimation.

3.2 Pitch augmentation

During flight, the quadrotor maneuvers by continuously
adjusting its pitch to generate forward/backward thrust. With-
out any kind of digital or mechanical stabilization (i.e., nor-
malization), these attitude changes directly affect the geome-
try of the drone camera images. Pitch augmentation addresses
this problem by synthetically enhancing the pitch range rep-
resented in the CNN’s training set, at the expense of a reduced
vertical field of view (VFOV). As shown in Figure 2, we ac-
quire 160×160px images from the Himax camera with a 85°
VFOV. By cropping 160×96px sub-regions at varying vertical
offsets, we can simulate 65 different images with a 51° VFOV
in a ±17° range of relative pitch compared to the original im-
age. In other words, the top 96-row region of an image shows
approximately the same scene at a −17° pitch compared to
the central 96-row region.

This simple approximation neglects the perspective and
radial distortion components of the real geometric transfor-

1https://bitcraze.io/products/crazyflie-2-1/



Figure 3: PULP-Frontnet CNN architecture [4], extended with the multi-layer perceptron branch for the state input.

mation imposed by a pitch change, but has the advantage
of generating augmented sub-regions that are always entirely
contained in the original image.

3.3 Vision-state fusion

We also propose an orthogonal approach to deal with
changes in drone attitude by feeding to the model the cur-
rent pitch in addition to the image; we expect that the CNN
will exploit this information to explicitly account for pitch
changes. This takes advantage of information already avail-
able on board, computed by the state estimation system from
measurements of the inertial measurement unit (IMU).

We compare the four models that result from combining
pitch augmentation applied to the training data (referred from
here on as models w/ or w/o pitch aug) and the additional
pitch input fed to the CNN (i.e., stateless and stateful mod-
els). When evaluating models trained with both pitch aug-
mentation and stateful input, care must be taken to ensure that
the state input remains consistent after the augmentation. We
sum the original image’s ground-truth pitch with the synthetic
pitch angle that corresponds to the random region selected by
the augmentation. The resulting angle, which is then fed to
the model, is the pitch that would produce a real image with
the same orientation as the augmented one.

4 EXPERIMENTAL SETUP

Our model architecture is based on PULP-Frontnet [4],
a 9-layer CNN tuned for the GAP8 SoC on the target nano-
drone. We follow the original execution strategy when de-
ploying the trained models: 8-bit quantized arithmetic for all
CNN operations and automatically-generated tiling code, re-
spectively to compensate for the lack of floating-point units
on the GAP8 and to efficiently exploit its explicitly-managed
memory hierarchy and 8-core parallel cluster.

For our vision-state fusion experiments, we extend our
architecture to receive the drone’s current pitch from the
state estimation as an additional scalar input. As described
in [22], we pre-process the state input with a small multi-
layer perceptron (MLP), composed of two 8-unit fully con-
nected layers (FC) interleaved by ReLU non-linearities, be-
fore concatenating it to the CNN’s main FC layer. The re-
sulting architecture (see Figure 3) has a negligible increase

in inference-time memory and computation requirements, re-
spectively +120 bytes and +140 multiply-accumulate oper-
ations (MACs), compared to 300 kB and 14MMACs to-
tal for the original PULP-Frontnet architecture. We deploy
the MLP branch with sequential software-emulated floating-
point arithmetic, which accounts for just 0.5% of the total
workload (∼ 20k clock cycles).

Data for our experiments is collected in two different
mocap-equipped indoor laboratories and includes a combina-
tion of static samples with the drone fixed horizontally on a
wheeled cart (20%) and in-flight samples with the drone con-
trolled by a human pilot (80%). In total, we record 12k cam-
era frames, with associated ground-truth poses and estimated
attitudes, from sessions with 17 human subjects of different
age, height, ethnicity, and clothing. Three subjects (4.7k sam-
ples) form our test set, while the remaining 14 subjects (7.3k)
are split into training (90%) and validation (10%) sets.

In our strategy, we augment each training sample 10
times, as an offline pre-processing step, performing a num-
ber of standard photometric data augmentations to promote
robustness of our model to illumination changes – exposure,
gamma correction, dynamic range adjustments, addition of
Gaussian noise, and blurring – followed by vignetting, and
horizontal flipping with 50% probability (shown in Figure 4).
When enabled, our proposed pitch augmentation is also ap-
plied during this step, before all other augmentations. On the
training and validation sets, we uniformly select a random
synthetic pitch from the ±17° range. For one experiment,
we perform pitch augmentation also at test time – without
the other augmentations – in this case generating every pos-
sible synthetic pitch for each test image (65 copies). Finally,
we discard samples in which the subject is outside the field
of view, obtaining the distributions of camera pitch values
shown in Figure 5. We observe that pitch augmentation has
a strong regularizing effect on the distribution, removing the
heavy bias towards pitch 0° of the real data – i.e., w/o pitch
aug in Figure 5.

Training is performed for 100 epochs using the Adam op-
timizer with learning rate 10−3 to minimize the L1 loss of
the relative pose. At the end of training, the model check-
point that reached the best performance on the validation set
is selected for evaluation on the test set.



Figure 4: Individual photometric data augmentations (top). Ten images produced by the entire augmentation pipeline (bottom).

Figure 5: Distributions of camera pitch in the datasets.

5 EXPERIMENTAL RESULTS

In the following, we first evaluate the performance of our
models in offline experiments on the test set. We train five
instances of each model and measure their regression perfor-
mance using the coefficient of determination R2, a standard
adimensional metric that represents the fraction of variance
in the target variable explained by the model2. An R2 = 1.0
corresponds to a perfect regressor, while a dummy regres-
sor that always outputs the mean of the test data achieves
R2 = 0.0. Models can perform arbitrarily worse than the
dummy regressor, leading to negative R2 scores. The R2

score is closely related to another standard regression met-
ric, the mean squared error (MSE)3. Unlike the MSE, the R2

score quantifies the quality of the regressor independently of
the variance of the target variable, and is therefore suitable for

2Defined as R2 = 1 −
∑

i
(yi−ŷi)

2/
∑

i
(yi−ȳ)2 with yi the ground-

truth output and ŷi the model prediction for each test sample i, ȳ the mean
of ground-truth outputs.

3In fact, rewriting the formula above gives R2 = 1− MSE/MSEdummy .

comparing regression performance on different variables. To
further validate our results, we also evaluate the entire closed-
loop system, deploying the models aboard the nano-drone and
evaluate their in-flight behavior.

5.1 Offline experiments

We show the four models’ regression performance in
terms of R2 score on the test set in Figure 6-A. The stateless
model w/o pitch aug (hollow red model) represents our base-
line. Introducing pitch augmentation alone (hollow blue) cor-
responds to the original PULP-Frontnet model, trained and
evaluated on our new data. We see a strong positive effect
on the performance of all three output components (x, y, z)
when compared to the baseline, with an increase in median
R2 of respectively +0.13, +0.12, and +0.09. The original
PULP-Frontnet is trained exclusively on static training data
at 0° pitch, with pitch augmentation as the only source of
pitch variability. In contrast, we show in this work that pitch
augmentation is strongly beneficial even when a vast majority
of training data is collected in flight with real pitch variations.

On the other hand, introducing the state input alone (filled
red) has a weak effect compared to the baseline. Only on z
we see a median R2 increase of +0.07, while x and y are
much closer (+0.02 and +0.00). A similarly weak effect is
visible when the state input is introduced on top of pitch aug-
mentation (filled blue vs. hollow blue): on z we see a me-
dian R2 increase of +0.06, while x and y are not affected.
Overall, pitch augmentation strongly improves all three out-
put components, while the state input noticeably benefits only
z (intuitively, the component on which pitch has the strongest
visual impact). The two techniques can be applied simultane-
ously, with the respective benefits compounding to reach the
top performance.

We further analyze the four models’ regression perfor-
mance across a wide range of pitch angles by applying test-
time pitch augmentation to the test set, as discussed in Sec-
tion 4.

Unsurprisingly, the overall regression performance in
Figure 6-B decreases for all models compared to Figure 6-A.
Those trained without pitch augmentation (red) in particular
show a drop in median R2 score of up to −0.33. Relative
performance across the four model is unchanged compared



Figure 6: Overall regression performance in the offline experiments on the test set.

Figure 7: Regression performance on the test set with test-time pitch augmentation, broken down by drone pitch.

to the raw test set. The nearly-uniform distribution imposed
by pitch augmentation allows us to clearly visualize the re-
gression performance broken down by pitch angle in Fig-
ure 7. Non-augmented models (red) exhibit a drastic drop
at extreme pitch angles, especially on z, where performance
falls to R2 = 0.0 at ±15°. The performance of augmented
models (blue) remains more stable across the entire range of
pitch values: we attribute this to scarcity of real-world train-
ing data at extreme pitches, further confirming the effective-
ness of pitch augmentation. On top of that, performance on x
and y decreases at negative pitch angles (camera looking up),
with pitch augmentation only partially compensating. Often,
from visual inspection of the data, just the subject’s head re-
mains visible at strongly negative pitch, making accurate pre-
dictions harder.

5.2 In-field evaluation

In the second experiment, we focus on the two best-
performing models, those trained with pitch augmentation
(blue), and evaluate their behavior in the field when deployed
aboard a closed-loop fully-autonomous Crazyflie nano-drone.
We evaluate a combination of two scenarios and three distinct
subjects, repeating each for five flights of ∼10 s per model, a

total of 60 test flights. In both scenarios, the drone starts hov-
ering at 0.5m altitude and at a ∼6m horizontal distance in
front of the subject, then the onboard CNN inference is used
to autonomously control the drone towards a target position
1.3m in front of the person at eye level. Forward velocity is
limited to a maximum of 1.2m/s.

In the first scenario, the subjects stand still for the entire
duration of the test, while the drone climbs from the hovering
altitude up to their height (1.65–1.85m) and simultaneously
moves forward towards them. We are thus stressing the mod-
els’ x and z predictions. Figure 8-A shows the drone’s dis-
tance from the target in the horizontal plane over time under
this scenario: both models achieve almost identically good
behavior, converging to the target with almost no error nor os-
cillations. Figure 8-B, on the other hand, shows the difference
(delta) between drone and target altitudes over time. Here, the
models’ behaviors differ noticeably: while the stateful model
firmly converges to the desired position, the stateless model
cannot reach it and overshoots instead.

The second scenario is identical to the first at the be-
ginning. Then, after 6 s from the start, the subjects are in-
structed to kneel down. This strongly challenges dynamic z
predictions, as the drone has almost reached the target posi-



Figure 8: In-field behavior of the stateless and stateful models trained with pitch augmentation.

tion 1.3m in front of the subjects when they start kneeling.
This means the person’s downward motion corresponds to a
considerable movement in image space, giving the drone lit-
tle time to react before losing the target outside the field of
view. Under this scenario, we see the stateless model strug-
gling to follow subjects as they kneel, both in the horizontal
plane (Figure 8-C) and in altitude (Figure 8-D). In contrast,
the stateful model both precisely converges in front of the
standing subjects (t = 6s), and accurately follows them as
they kneel (t = 6s to 7.5s), keeping the correct horizontal
distance and descending to reach the new target altitude.

From this experiment, we conclude that the state input
(pitch) leads to significantly improved performance in the
field. While little difference between the stateless and stateful
models was seen in the offline experiments, we show that the
stateful model’s in-flight closed-loop behavior significantly
outperforms its stateless counterpart.

6 CONCLUSION

We considered a perception problem for MAVs solved us-
ing a regression CNN; to enforce robustness to image varia-
tions due to drone pitch, we proposed and quantitatively eval-
uated an approach based on data augmentation, achieving im-
provements in median R2 score of up to +0.15; we further
verified that providing explicit information about the drone
pitch to the model yields improvements both in offline and
in-field control experiments.

ACKNOWLEDGEMENTS

This work was partially supported by the Secure Systems
Research Center (SSRC) of the UAE Technology Innovation
Institute (TII).

REFERENCES

[1] Guanya Shi, Wolfgang Hönig, Yisong Yue, and Soon-Jo
Chung. Neural-Swarm: Decentralized close-proximity
multirotor control using learned interactions. In 2020
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 3241–3247, 2020.

[2] Wenda Zhao, Jacopo Panerati, and Angela P. Schoel-
lig. Learning-based bias correction for time differ-
ence of arrival ultra-wideband localization of resource-
constrained mobile robots. IEEE Robotics and Automa-
tion Letters, 6(2):3639–3646, 2021.

[3] Daniele Palossi, Francesco Conti, and Luca Benini. An
open source and open hardware deep learning-powered
visual navigation engine for autonomous nano-UAVs.
In 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 604–
611. IEEE, 2019.

[4] Daniele Palossi, Nicky Zimmerman, Alessio Burrello,
Francesco Conti, Hanna Müller, Luca Maria Gam-
bardella, Luca Benini, Alessandro Giusti, and Jérôme
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