
This paper has been accepted for publication in the EWSN 2023 conference
©2023 ACM.

Secure Deep Learning-based Distributed Intelligence on
Pocket-sized Drones

Elia Cereda
IDSIA, USI-SUPSI, Switzerland

elia.cereda@idsia.ch

Alessandro Giusti
IDSIA, USI-SUPSI, Switzerland

alessandro.giusti@idsia.ch

Daniele Palossi
IDSIA, USI-SUPSI, Switzerland

IIS, ETH Zurich, Switzerland

daniele.palossi@idsia.ch

Abstract
Palm-sized nano-drones are an appealing class of edge

nodes, but their limited computational resources prevent run-
ning large deep-learning models onboard. Adopting an edge-
fog computational paradigm, we can offload part of the com-
putation to the fog; however, this poses security concerns if
the fog node, or the communication link, can not be trusted.
To tackle this concern, we propose a novel distributed edge-
fog execution scheme that validates fog computation by re-
dundantly executing a random subnetwork aboard our nano-
drone. Compared to a State-of-the-Art visual pose estima-
tion network that entirely runs onboard, a larger network ex-
ecuted in a distributed way improves the R2 score by +0.19;
in case of attack, our approach detects it within 2 s with 95%
probability.

Supplementary material
In-field experiments and system demonstration video:

https://youtu.be/QwTiigAs4cA.

1 Introduction
With an increasing number of Internet-of-Things-capable

(IoT) end devices, from tiny headphones to autonomous cars,
the edge-fog paradigm permeates almost any civil and in-
dustrial application [6]. This paradigm exploits distributed
computation with a resource-limited edge device close to the
source of data, combined with a more capable remote fog
node able to overcome the memory and computational limits
of the former node. As the edge node, this work considers
a novel and appealing cyber-physical system: a pocket-sized
quadrotor or nano-drone. Thanks to their sub-10 cm diame-
ter, nano-drones have the potential to unlock unprecedented
application scenarios, such as the exploration of narrow, clut-
tered or GPS-denied environments, safe human-robot inter-
action, and intelligent ubiquitous IoT sensing. Additionally,
these platforms are much less expensive than larger ones due
to simplified electronics and mechanics.

However, with their small form factor comes their main
limitation: they can only host ultra-constrained processors
and sensors, i.e., simple ultra-low power microcontroller
units (MCUs) with a sub-100 mW power envelope. This
limitation poses two challenges; on the one hand, they have
extremely limited computational power and memory to run
aboard complex real-time algorithms. To partially overcome
this issue, nano-drones often adopt navigation engines based
on small convolutional neural networks (CNNs) [12, 7], due

Figure 1. The threat model of our edge-fog use case.

to their compelling trade-off between accuracy and compu-
tational cost, compared to geometrically precise computer
vision-based [10] and predictive methods [9].

On the other hand, the security features nano-drones can
offer are still quite rudimentary and rarely addressed by
State-of-the-Art (SoA) solutions [18]. An edge-fog scheme
introduces two significant vulnerabilities in the remote fog
node and the communication channel: compromising either
of them, e.g., with fog malware, man-in-the-middle, data in-
filtration, or data-in-transit attacks, allows an attacker to send
malicious commands to the edge and take control of its be-
havior. Our work tries to mitigate both vulnerabilities.

We address the human pose estimation task and embody
the edge-fog paradigm with a nano-drone (edge) and a WiFi-
connected commodity laptop (fog), which acts as a power-
ful remote brain to boost the perception capabilities of the
edge node, as depicted in Figure 1. In our case, the edge-
fog execution scheme enables execution of more complex
CNNs, otherwise unaffordable aboard the nano-drone within
its real-time constraints. We design a three-stage distributed
MobileNetV2-based [14] CNN to perform our vision-based
task. The first compression stage transforms a large input
image into a smaller tensor; a central backbone performs the
most computationally-intense processing; a final reduction
stage produces the output. Then, we design the central back-
bone with a multi-branch structure, where multiple tensors
are computed independently and in parallel before being re-
duced in the final stage. We execute the first and last stages
on the nano-drone while we offload the heavy multi-branch
backbone to the fog node.

Our strategy enables an additional level of security be-

ar
X

iv
:2

30
7.

01
55

9v
1 

 [
cs

.R
O

] 
 4

 J
ul

 2
02

3

https://youtu.be/QwTiigAs4cA


tween edge and fog nodes, which can be stacked on top
of traditional encryption mechanisms if affordable by the
edge MCU. While the fog executes all branches for every
input image, the edge also executes one random branch at a
time and checks its resulting tensor against the one received
from the fog, embodying a probabilistic security mecha-
nism. If the check is successful, the edge uses all the re-
ceived tensors (one per branch) to run the final reduction.
Otherwise, it falls back to a small field-proofed CNN able
to run in real-time aboard a nano-drone, i.e., the PULP-
Frontnet [12]. The PULP-Frontnet acts as a backup solu-
tion, taking control when either the information received by
the fog is compromised or when the communication channel
is disrupted/unavailable (e.g., jamming). This shallow CNN
trades the regression accuracy w.r.t. the more accurate re-
mote multi-branch CNN for lower complexity, making it our
“last resort” to complete or gracefully abort the mission.

We demonstrate our general approach by showing the per-
ceptive benefit of a multi-branch MobileNetV2-based CNN,
which achieves a mean +0.19 R2 score increase compared
to the PULP-Frontnet baseline. Then, we introduce a simple
model accounting for computation and communication over-
heads to identify the optimal points to split our CNN between
compression, backbone, and reduction stages to maximize
the overall throughput up to ∼8 frame/s. Finally, we deploy
our distributed system in the field, assessing its security func-
tionalities (see in-field video) and closed-loop performance
with a 31.3% (horizontal) and 34.6% (angular) reduction of
the control error compared to the baseline.

2 Related work
Autonomous navigation algorithms executed aboard

nano-robotics platforms are subject to severe computational
and memory constraints. SoA CNNs deployed on nano-
drones exploit novel parallel ultra-low-power systems-on-
chip (SoCs) [1, 11, 12], but they can only execute much
simpler real-time workloads compared to those running on
larger-scale UAVs. Therefore, limiting the complexity of
the achievable tasks and the quality of the obtained results.
Among these works, PULP-Frontnet [12] is a monocular
CNN for the human pose estimation task with a computa-
tional cost of 14.7 MMAC (millions of multiply-accumulate
operations). It achieves an inference rate of 48 frame/s while
consuming 96 mW, aboard a Crazyflie 2.1 nano-drone.

By comparison, common visual CNN architectures [3, 13,
5, 20] deployed on larger drones have orders of magnitude
higher computation workloads. For example, Foehn et al. [3]
tackle the task of gate pose estimation in an autonomous
drone race using a 1930 MMAC per inference CNN running
on an Nvidia Jetson Xavier board (∼20 W). These systems
either depend on more powerful on-board processors than
available on nano-drones [3, 5] or offload the computation to
a remote node and thus suffer from the security vulnerabili-
ties we address in this work [13, 20].

Several ad-hoc neural network architectures have been
proposed for efficient execution while retaining SoA task
performance, such as MobileNetv2 [14] or Efficient-
Netv2 [15]. We select MobileNetv2, i.e., one of the most
widespread CNN for embedded devices, as the base architec-

ture for our work. Given its design for smartphone-class de-
vices with 90 MMAC per inference, we leverage a fog node
to achieve real-time throughput and SoA regression perfor-
mance on our task. Additionally, despite the specific archi-
tecture used in our use case, we present a general approach
that can be applied to other CNNs and for different tasks.

We extend MobileNetv2 with a distributed execution
scheme based on multiple independent branches to achieve
the desired security properties. Multi-branch architectures
have been adopted in several recent works for various rea-
sons, such as i) reducing the computational cost by dynam-
ically executing only subsets of the branches [8, 16], ii) to
estimate uncertainty in network predictions [17]; iii) to pre-
vent adversarial attacks [4]. Crucially, these works all focus
on models running on a single device, while our work is the
first to employ a multi-branch architecture to detect attacks
on a distributed edge-fog system, where an agile nano-drone
embodies the edge node.

3 System design
3.1 Use case

In the envisioned scenario, the nano-drone (edge node)
is tasked with a vision-based perception task, i.e., human
pose estimation. A more capable fog node, represented by
a resource-unconstrained remote laptop, provides additional
computational power to the nano-drone to increase its execu-
tion performance. Edge and fog nodes share a bi-directional
communication channel, i.e., WiFi, on which they can con-
tinuously stream data. We select two different deep-learning
models to perform the pose estimation task. The former is a
lightweight (300 k parameters) convolutional neural network
(CNN) called PULP-Frontnet [12] and previously demon-
strated running in real-time aboard nano-drones. The latter
is a more memory-/computationally-demanding (1.8 M pa-
rameters) but also more accurate CNN, based on the Mo-
bileNetV2 model [14]. The MobileNetV2-based workload
is distributed between edge and fog, where most of it is exe-
cuted by the more capable remote fog, leaving a smaller frac-
tion of computation on the memory/processor-limited edge.
The lightweight PULP-Frontnet is executed entirely on the
edge, only if the communication channel or the remote com-
putation becomes compromised, as detailed in the following.

3.2 CNN design
The traditional execution scheme of many vision-based

CNNs can be mapped into three main computational stages,
as shown in Figure 2. i) an initial compression stage, where
a high-resolution input image is compressed to a smaller-
size tensor; ii) the execution of a central computationally-
demanding backbone; and iii) a final reduction stage, e.g.,
a fully connected layer, producing the final output. Under
this consideration, we design our MobileNetV2-based CNN
as a multi-branch model, where the central backbone is split
into N independent branches. Each branch is fed with the
same input tensor, i.e., the output of the initial compression
stage – called trunk – and produces its output tensor. The last
reduction stage, called head, takes as input the concatenation
of all tensors resulting from the multi-branch backbone and
produces the final output for the robot controller.

We apply this general approach to the task of human pose



Figure 2. Vision-based CNN’s three main stages.

estimation. Our CNN takes as input one gray-scale 160×96
px image and estimates the pose of the human subject rel-
ative to the drone. The pose components are represented
as four independent regression outputs, which correspond to
the three Cartesian coordinates of the subject’s position in
3D space (x,y,z) w.r.t. the drone’s horizontal frame and the
subject’s relative orientation w.r.t. the drone’s yaw, φ. Fi-
nally, we employ this relative pose (x,y,z,φ) to perform the
“follow-me” application aboard our nano-drone.
3.3 Threat model

The success of our mission depends on i) correct execu-
tion of both edge and fog computation, and ii) reliable and
unaltered data exchange between edge and fog nodes. We fo-
cus on the two vulnerabilities shown in Figure 1, in which a
malicious actor either compromises the entire fog node or the
communication channel, e.g., man-in-the-middle, data infil-
tration, and data-in-transit hacked attacks. Either scenario
would allow the attacker to poison the information trans-
mitted by the fog node and thus take control of the nano-
drone. To mitigate this threat, we introduce a probabilistic
security mechanism that relies on redundant execution of a
small amount of computation on the edge node to assess the
trustworthiness of the data received from the fog.

Our approach is orthogonal to computationally-
demanding traditional countermeasures, such as communi-
cation encryption (not always affordable on MCU-limited
edge nodes), providing a defense-in-depth strategy. Finally,
the last attack we consider is complete loss of the edge-fog
communication channel (e.g., radio jamming). In this case,
we resort to safe execution of the PULP-Frontnet CNN
entirely aboard our nano-drone, degrading pose estimation
accuracy but without jeopardizing the mission.
3.4 Proposed strategy

We propose a strategy based on partial computation re-
dundancy to enable an onboard probabilistic security mech-
anism while increasing the edge inference throughput thanks
to the computationally-capable fog. Figure 3 shows the pro-
posed system. The execution starts from the edge node run-
ning the first compression stage (trunk CNN) on the input
image (x) and producing a compressed tensor T to reduce
the streaming data between edge and fog nodes:

T = trunk(x) (1)

T is then forwarded via WiFi to the fog and used locally
on the edge. The fog node executes the entire multi-branch
backbone for each input tensor T . The CNN running on the

Figure 3. Our distributed probabilistic security strategy.

fog is the backbone (central part) of a MobileNetV2 CNN
composed of N independent branches, where N is a hyper-
parameter of the model. Each branch receives the same input
T and produces one unique feature tensor Bi:

Bi = branchi(T ) for i = 1...N (2)

Feature tensors from all branches are then forwarded via
WiFi to the edge.

On the edge node, only one random branch j is executed
per input image to minimize the computation burden. A
cryptographic random number generator ensures that an at-
tacker cannot predict the sequence of verified branches. The
selected branch is fed with T and produces B̂ j, which is
compared against the fog’s corresponding computation B j.
If B j is bit-by-bit identical to B̂ j, then all the tensors received
from the fog are considered trustable and concatenated (

⊕
operator) before being reduced in the final stage:

y = head(
⊕

i

Bi) (3)

where the head CNN computes the final output y on the edge.
Under this system design, the attacker maximizes their

chances of avoiding detection by tampering with only a sin-
gle feature tensor Bk. This translates to a probability 1/N
of detecting an attack in any given frame (i.e., the probabil-
ity that the edge node executes the same branch corrupted
by the attacker j = k). Nevertheless, our detection scheme
is so lightweight that it can run continuously as part of a
robot’s closed-loop controller. Therefore, the attacker must
continue tampering over time to keep control of the nano-
drone, but our attack detection probability converges to 1.0
as more frames are verified.
3.5 Deployment

Robotic platform. Our edge node is embodied by a com-
mercial off-the-shelf (COTS) Crazyflie 2.1 nano-quadrotor,
an open-source 27 g palm-sized nano-drone produced by
Bitcraze. An STM32 MCU performs low-level flight con-
trol, while an AI-deck COTS expansion board provides high-
level vision-based perception with an additional GWT GAP8
SoC. The GAP8 is a multi-core processor featuring 9 RISC-
V-based cores, split between an eight-core cluster optimized
for parallel computation of compute-intense workloads and a
single-core fabric controller that manages interfaces with ex-
ternal peripherals and on-chip memories. The on-chip mem-
ory hierarchy is organized into two levels: 64 kB low-latency



Figure 4. Multi-branch MobileNetV2 CNN architecture.

L1 memory and 512 kB L2 memory. This expansion board
also provides off-chip memories (8 MB DRAM and 64 MB
Flash), a monochrome QVGA Himax HM01B0 camera, and
an ESP32-based Ublox NINA-W102 WiFi module. The lack
of hardware floating-point units and data cache memories on
the GAP8 SoC dictate, respectively, integer-quantized arith-
metic and explicit data management between memories. We
leverage an ad-hoc CNN deployment pipeline to generate C
code that addresses these concerns [12]. The fog node also
runs its workload in fixed-point arithmetic to simplify bit-by-
bit tensor comparisons.

Multi-branch architecture.
We design our CNN starting from the widely adopted Mo-

bileNetV2 [14], which requires 89 MMAC operations per in-
ference. First, we define a coarse split of the three CNN
segments we introduced in Section 3.2: the trunk, a multi-
branch backbone, and the final head, see Figure 4. Branching
the execution from the beginning of the CNN, which means
discarding the trunk, would lead to poor regression perfor-
mance and a waste of resources by neglecting an initial train-
able path shared by all branches [19]. Therefore, initially, we
define as the cutting point between the trunk and backbone
the first layer having an output tensor smaller than the input
image (∼15 kB), which results in a trunk of 25.7 MMAC op-
erations. The remaining 63.3 MMAC are equally distributed
among all N branches, splitting the number of output chan-
nels. For example, in the case of N = 8, a layer producing
an output tensor of 32 channels in the original CNN is split
into 8 layers, each outputting a tensor of 4 channels.

Figure 5 shows four configurations in the number of back-
bone’s branches, i.e., 1, 2, 4, and 8. For each configuration,
we report on the primary y-axis the probability of detecting
an attack within a dt time of 0.5, 1, 1.5, and 2 s; the higher the
dt, the higher the probability of converging to 1. On the sec-
ondary y-axis, we show the achievable frame rate for each
configuration; more branches result in less computation on
the edge node and lower detection probability. The real-time
constraint posed by our cyber-physical system suggests se-
lecting a configuration with a frame rate as higher as possi-
ble, with a lower bound of ≈10 frame/s [12]. Therefore, we
use the configuration N = 8 for our experiments, which also
achieves a detection probability of 95% with a dt=2 s.

Finally, in Figure 6, we thoroughly analyze how differ-
ent cutting points affect the edge execution time and TX/RX
communication latencies between edge and fog, for which
we assume a negligible execution time having multiple or-

Figure 5. Detection probability vs. inference frame-rate.

ders of magnitude more capable compute unit. Layers in
the MobileNetV2 architecture are grouped in inverted resid-
ual blocks, inside which tensor sizes follow an expansion-
compression pattern. For this reason, we force cutting points
to be placed at block boundaries, which we show in Figure 4
with 9 IDs. Earlier cutting points in the trunk, y-axis in Fig-
ure 6, minimize its execution time (A) but inflates the TX
communication latency (B) as more data are streamed to the
fog. Similarly, later cutting points of the head, x-axis in Fig-
ure 6, increase the execution time of the trunk (A), the back-
bone’s one branch (C), but reduce the latencies for both RX
communication (D) and the head execution (E). End-to-end
latency (F) considers that the edge node executes the back-
bone branch in parallel with communication:

end-to-end = trunk+max(backbone,TX+RX)+head (4)

The resulting optimal configuration is trunk cutting point ID
= 3 and head cutting point ID = 8. Finally, we deploy and
profile this optimal model on the GAP8 SoC, obtaining a
±5% execution time compared to the estimates in Figure 6.
4 Results

We report three experiments. The first shows the im-
proved regression performance of our proposed multi-branch
model. The second shows the resulting improvement of in-
field robot behavior. The third demonstrates the attack de-
tection capabilities of the proposed security scheme.
4.1 Regression performance

We use the dataset presented in [2] for our training and
regression performance analysis. This dataset contains im-
ages acquired with the same robotic platform employed in
our work and labels of the absolute pose of human subjects
and a nano-drone. Data are collected from two indoor lab-
oratories equipped with a motion capture system (mocap),
accounting for 12k images collected with 17 distinct human
subjects (age, height, etc.). Three subjects (4.7k samples)
form our test set, while the remaining 14 subjects (7.3k) are
used for training (90%) and validation (10%). Starting from
models pre-trained on ImageNet, we train for 100 epochs
with the Adam optimizer and learning rate 10−3 to minimize
the L1 loss of the relative pose.

Regression performance represents the ability of the
model to estimate the subject’s relative pose accurately. We
quantify it through the R2 score (or coefficient of determina-
tion) computed for each output variable. R2 is a standard adi-
mensional metric representing the fraction of variance in the
target variable explained by the model. An ideal model that



Figure 6. Latency induced by each component, for every combination of cut points.

perfectly estimates the variable yields R2 = 1; a trivial model
that always returns the test set average yields R2 = 0.0.

Figure 7 compares the proposed fog+edge multi-branch
models against the SoA edge-only PULP-Frontnet and the
fog-only original MobileNetV2. Each model is trained five
times with randomly-initialized parameters. The original
MobileNetV2 shows a ∼ 7× increase in network parameters
and computation workload, which pays off with an increase
of more than +0.20 in median R2 score compared to PULP-
Frontnet, justifying the use of a fog node and larger models.
Compared to the original MobileNetV2, multi-branch mod-
els yield similar (or slightly improved) computation work-
loads and R2 scores on all output variables. Thus, introduc-
ing the multi-branch architecture enables our security appli-
cation without impacting other aspects of the system. Fig-
ure 8 compares individual predictions of the 8-branch Mo-
bileNetV2 against PULP-Frontnet, showing a significantly
lower regression error on all four pose components.
4.2 Control performance

This experiment evaluates our model’s tracking accuracy
when used in a fully-autonomous in-field closed-loop control
system. We reproduce the testing setup of our baseline [12],
where the human subject, never seen by the models during
training, moves along a predefined path of increasing diffi-
culty. At the same time, the autonomous drone is tasked to
stay in front of the subject at a constant distance of 1.5 m,
therefore behaving in the “follow-me” application. We com-
pare two models: the SoA PULP-Frontnet baseline, running
entirely on the edge node, and the 8-branch MobileNetV2
model, running remotely on the fog node, which is also af-
fected by the end-to-end communication latency. While a
mocap system tracks both subject and drone poses, we per-
form three flights per model (3×2 = 6 flights) plus one ad-
ditional flight in which the controller relies on the subject’s
ground-truth pose (as measured by the mocap), representing
the behavior with a perfect predictor.

Table 1 measures the resulting control performance
through two error terms: exy, the drone’s mean horizontal
distance from its desired position (i.e., 1.5 m in front of the
subject), and eθ, the drone’s mean absolute angular error
from its desired orientation (i.e., looking directly at the sub-
ject). The mocap-based flight represents the control error
lower bound achievable with perfect predictions. We ob-
serve that the 8-branch MobileNetV2 model significantly im-
proves on the baseline, reducing both errors by -30%. The

Table 1. Control error.

PULP-Frontnet [12] MobileNetV2
(8 branches) Mocap

Control error
exy [m] 0.99 0.68 0.18
eθ [rad] 0.75 0.49 0.21

supplementary video also shows these experiments, high-
lighting the improved control accuracy.

4.3 Onboard security demonstration
In the supplementary video, we demonstrate our system’s

security capabilities in an in-field qualitative demonstration.
Initially, the nano-drone performs the “follow-me” task in
normal conditions without attacks nor security mechanisms
in place. This results in good tracking performance, with
the nano-drone able to precisely follow the human subject
(never seen in training). After a few tens of seconds of flight,
we simulate an attack in which the fog node continuously
sends malicious tensors to the edge. This malicious tensor
encodes a final regression output of x < 1.5m, which forces
the drone to fly away from the subject, i.e., perceived as too
close. Then, the same attack is repeated, but this time having
the probabilistic security mechanism active. In this case, the
attack is detected within 1 s, and the edge node reacts by
triggering a predefined emergency behavior, i.e., hovering in
place. Once the attack terminates, the fog tensor returns to
be trusted by the onboard security mechanism, and the nano-
drone resumes following the human subject.

5 Conclusion
We present a probabilistic security mechanism built

on top of an edge-fog system embodied by a resource-
constrained nano-drone (edge) and a powerful remote com-
modity laptop (fog). By designing a novel MobileNetV2-
based CNN, whose heaviest central part is a multi-branch
model, we can offload the vast majority of the computation
to the fog node while replicating a minimal part on edge to
verify its trustworthiness. We demonstrate our approach’s ef-
fectiveness, showing i) an increased prediction capability of
our pose estimation task by a mean +0.19 R2 score compared
to a SoA single-branch CNN, and ii) enabling our system to
detect malicious data infiltration between edge and fog with
95% probability within 2 s of data exchange.



Figure 7. CNN parameters (top left), operations (bottom left), and regression performance (right).

Figure 8. Scatter plots of predictions vs. ground truth.

6 Acknowledgments
This work was partially supported by the Secure Systems

Research Center (SSRC) of the UAE Technology Innovation
Institute (TII).

7 References
[1] R. J. Bouwmeester et al. NanoFlowNet: Real-time dense optical flow

on a nano quadcopter. arXiv preprint arXiv:2209.06918, 2022.
[2] E. Cereda et al. Handling pitch variations for visual perception in

MAVs: Synthetic augmentation and state fusion. In IMAV, 2022.
[3] P. Foehn et al. AlphaPilot: Autonomous drone racing. Autonomous

Robots, 46(1):307–320, 2022.
[4] T. Hu et al. Triple wins: Boosting accuracy, robustness and efficiency

together by enabling input-adaptive inference. In ICLR, 2020.
[5] S. Jung et al. Perception, guidance, and navigation for indoor au-

tonomous drone racing using deep learning. IEEE Robotics and Au-
tomation Letters, 3(3):2539–2544, 2018.

[6] A. Khanna et al. Internet of things (IoT), applications and chal-
lenges: a comprehensive review. Wireless Personal Communications,
114:1687–1762, 2020.

[7] L. Lamberti et al. Tiny-PULP-Dronets: Squeezing neural networks for
faster and lighter inference on multi-tasking autonomous nano-drones.
In 2022 IEEE 4th International Conference on Artificial Intelligence
Circuits and Systems (AICAS), pages 287–290, 2022.

[8] R. T. Mullapudi et al. HydraNets: Specialized dynamic architectures
for efficient inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[9] H. Nguyen et al. Model predictive control for micro aerial vehicles:
A survey. In 2021 European Control Conference (ECC), 2021.

[10] D. Palossi et al. GPU-SHOT: Parallel optimization for real-time 3d
local description. In 2013 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 584–591, 2013.

[11] D. Palossi et al. An open source and open hardware deep learning-
powered visual navigation engine for autonomous nano-uavs. In 2019
15th International Conference on Distributed Computing in Sensor
Systems (DCOSS), pages 604–611. IEEE, 2019.

[12] D. Palossi et al. Fully onboard AI-powered human-drone pose estima-
tion on ultralow-power autonomous flying nano-UAVs. IEEE Internet
of Things Journal, 9(3):1913–1929, 2021.

[13] L. O. Rojas-Perez et al. DeepPilot: A CNN for Autonomous Drone
Racing. Sensors, 20(16):4524, Jan. 2020.

[14] M. Sandler et al. MobileNetV2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[15] M. Tan et al. EfficientNetV2: Smaller models and faster training. In
38th International Conference on Machine Learning (ICML), volume
139, pages 10096–10106, Jul 2021.

[16] S. Teerapittayanon et al. BranchyNet: Fast inference via early exiting
from deep neural networks. In 2016 23rd International Conference on
Pattern Recognition (ICPR), pages 2464–2469, 2016.

[17] M. Valdenegro-Toro. Deep sub-ensembles for fast uncertainty estima-
tion in image classification. arXiv preprint arXiv:1910.08168, 2019.

[18] M. Yahuza et al. Internet of drones security and privacy issues: Tax-
onomy and open challenges. IEEE Access, 9:57243–57270, 2021.

[19] M. D. Zeiler et al. Visualizing and understanding convolutional net-
works. In Computer Vision – ECCV 2014, pages 818–833, 2014.

[20] X. Zhou et al. Human motion capture using a drone. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018.


	Introduction
	Related work
	System design
	Use case
	CNN design
	Threat model
	Proposed strategy
	Deployment

	Results
	Regression performance
	Control performance
	Onboard security demonstration

	Conclusion
	Acknowledgments
	References

