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Sim-to-Real Vision-depth Fusion CNNs for Robust Pose Estimation
Aboard Autonomous Nano-quadcopters

Luca Crupi!, Elia Cereda!, Alessandro Giusti', and Daniele Palossi'?

Abstract— Nano-quadcopters are versatile platforms attract-
ing the interest of both academia and industry. Their tiny
form factor, i.e., ~10cm diameter, makes them particularly
useful in narrow scenarios and harmless in human proxim-
ity. However, these advantages come at the price of ultra-
constrained onboard computational and sensorial resources
for autonomous operations. This work addresses the task of
estimating human pose aboard nano-drones by fusing depth
and images in a novel CNN exclusively trained in simulation
yet capable of robust predictions in the real world. We extend
a commercial off-the-shelf (COTS) Crazyflie nano-drone —
equipped with a 320x240 px camera and an ultra-low-power
System-on-Chip — with a novel multi-zone (8 x8) depth sensor.
We design and compare different deep-learning models that fuse
depth and image inputs. Our models are trained exclusively on
simulated data for both inputs, and transfer well to the real
world: field testing shows an improvement of 58% and 51%
of our depth+camera system w.r.t. a camera-only State-of-the-
Art baseline on the horizontal and angular mean pose errors,
respectively. Our prototype is based on COTS components,
which facilitates reproducibility and adoption of this novel class
of systems.

SUPPLEMENTARY VIDEO MATERIAL
In-field tests: https://youtu.be/p4s2j0_6828.

I. INTRODUCTION

Miniaturized autonomous quadcopters (nano-drones) are
extending the application areas of aerial robotics, from
exploration in narrow spaces [1] to human-robot interac-
tion [2]. With a diameter of ~10 cm, nano-drones can reach
inaccessible places for bigger flying robots and safely operate
near humans. Additionally, nano-drone hardware is relatively
cheap compared to bigger and more powerful multi-rotors,
making these platforms even more attractive.

Still, these platforms come at the price of extremely
limited onboard resources, such as memories, processors, and
sensors [3]. This is a significant drawback in comparison to
standard-sized drones, with a diameter of ~50cm and a few
kg of payload, that can cope with complex environments and
sophisticated workloads [4], [5] thanks to onboard powerful
processors and rich sensors, such as LIDAR [6] and depth
cameras [7]. As an example, the GWT GAP8 System-on-
Chip (SoC) that equips our nano-drone platform peaks at
22 GOP/s: three orders of magnitude less than the NVIDIA
Jetson Xavier AGX flight computer, which achieves up to
32 TOP/s.
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Fig. 1. A) Definition of our person pose estimation task. B) Example of
person pose estimation scenario.

When designing nano-drone systems, simple convolutional
neural network-based (CNN) approaches are an attractive so-
lution to perception tasks since these models can be used for
inference with limited resources. Learning-based approaches
are suitable for fusing sensory streams from different on-
board sensors [8] since one can learn to manage noisy, low-
resolution data and even capture and exploit correlations
across sensors. Different types of sensing technologies can
complement each other, such as Time-of-Flight (ToF) depth
sensors, which are very accurate at a low distance (a few
meters), with noisy but longer-range CMOS cameras.

One challenge which arises when adopting this approach
is collecting the data to train multi-sensor perception models.
Existing large image-only datasets can not be used to train
multi-modal CNN since they miss the corresponding inputs
from the additional sensors. One solution would be acquiring
new data (with all sensors), which is expensive and time-
consuming if not unpracticable for those cases requiring
additional ad-hoc infrastructure such as an external motion
capture system (mocap) [9]. An option to extend existing
image-only datasets with the missing sensory data can be by
developing software models/pipelines to generate additional
synthetic samples. However, this strategy is only sometimes
applicable and can easily suffer from inaccuracy. A third
solution, also used in our work, relies on photorealistic
simulators, which can provide abundant data from multiple
sensors with little effort and time [9].

Combining i) a commercial off-the-shelf (COTS) Bitcraze
Crazyflie 2.1 nano-drone, ii) an Al-deck expansion board,
hosting a parallel ultra-low-power GWT GAPS SoC [12]
and a QVGA monochrome camera, and iii) an STM 8x8
multi-zone depth sensor, we introduce and demonstrate our
vertically integrated system. Our work addresses estimating
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TABLE I
SOA COMPARISON: POSE ESTIMATION TASK ON UAVS.

Work Pose Size Onboard Sensors Resolution Algorithm Training Device Power Field tested
[10] object standard yes mono camera VGA CNN real Jetson TX2 20W v
[4] object standard yes stereo cam- 2x 720p CNN+geom. real Jetson Xavier 20W v
era
[11] human micro no mono camera 1080p CNN+geom. real GTX Titan X 100 W X
2] human nano yes mono camera QVGA CNN real GWT GAP8 100 mW v
Ours human nano yes depth+camera 8x8/ QVGA CNN sim GWT GAP8 100 mW v

the relative pose of a human w.r.t. a nano-drone, as displayed
in Figure 1, employing a CNN that fuses data from the two
onboard sensors: depth sensor and monocular camera.

We contribute with i) the design and thorough analysis
of multiple CNN models fed with the two complementary
sensory inputs; if) a detailed description of our sim-to-real
pipeline, which exploits aggressive photometric augmenta-
tions and balanced label distributions; iii) comprehensive in-
field experimental results, challenging our system in real-
world conditions and comparing it across various configura-
tions, including a State-of-the-Art (SoA) baseline [2].

In-field experiments demonstrate i) the robustness of our
sim-to-real training method; ii) the efficiency of the CNN
fusing depth and images, which runs aboard the GAP8 SoC
up to 45 frame/s within a power envelope of 92 mW; iii) the
predictive performance of the fusion approach. In particular,
on a never-seen-before flying arena, our system significantly
outperforms a camera-only SoA baseline: the Mean Absolute
Error of the estimated human position and relative orientation
angle are reduced respectively by 58% and 51%. Finally,
our prototype employs only ready-to-use COTS electronic
components to ease the reproducibility and adoption of this
novel class of systems.

II. RELATED WORK

Standard/Micro-sized UAVs (50-30cm diameter) heavily
leverage multiple types of sensing devices to address various
perception tasks. For example, autonomous drone races, in
which a precise understanding of the world is fundamental to
navigate at high speeds, exploit depth information for various
tasks, including estimating 3D relative poses of gates [4],
[10] and supporting visual-inertial odometry pipelines [10].
Similarly, swarm operations of micro-sized drones can ex-
ploit depth sensors for mapping and localization tasks [13].
Typical depth sensors used in aerial robotics [14] include
stereo cameras like the ZED and Intel RealSense D430 and
RGB-D cameras based on ToF technology, such as the Azure
Kinect. All these accurate sensing devices come with a form
factor, weight (>100g), and power consumption (>5W),
which prevent them from being also adopted on nano-UAVs.
For this reason, aboard our nano-drone, we take advantage of
the ultra-compact STM VL53LC5CX 8x8 ToF-based depth
sensor (sub-centimeter size and sub-gram weight) and an
Himax HMO01B0O QVGA camera.

Focusing on our target pose estimation task, CNNs rep-
resent a common solution to tackle this problem [4], [5],

[10], [11], also on nano-drones [2]. Sophisticated multi-
cameras pipelines can combine CNN-based approaches with
geometric ones [4], but at the price of heavier computation.
In contrast, multi-modal CNNs directly fuse vision and depth
in a unified deep-learning model [8], [15], ensuring the
resulting models take full advantage of both modalities [16].
This approach is particularly relevant for our case as we can
afford only an extremely low-resolution depth map aboard
the nano-drone. Therefore, in this work, we explore multi-
modal CNN to maximize the information extracted from the
depth map.

Despite the limited computational capabilities of micro-
controller units (MCUs) aboard nano-drones, both monoc-
ular [3], [17], [18], [19], [2] and stereo [20], [21] vision-
based solutions have been proposed. However, this last group
of solutions introduces a significant computational load to
accomplish relatively low-level control tasks (stabilization
and obstacle avoidance). Among these works, the PULP-
Frontnet [2] CNN tackles the human pose estimation aboard
a Crazyflie nano-drone employing a monocular camera with
real-time performance. Starting from this SoA model, which
reaches up to 48 frames per second on our platform, we
present our novel multi-modal CNN, which fuses images and
depth maps by running directly aboard our nano-drone. The
constraint posed by the platform in terms of computational
capabilities and by the task in terms of minimum frame rate
for the in-field tracking, pose huge limits on the type of
networks that can be deployed onboard. Networks such as
Resnet-18 [22] and transformers [23], with several billion
multiply-accumulate operations (MACs) per frame [24], are
unsuitable for real-time performance on our platform. Table I
summarizes the aforementioned works, comparing them to
our proposed approach regarding sensor modalities, adopted
algorithms, and computation platforms.

III. BACKGROUND

Robotic platform: our prototype, shown in Figure 2, is
based on a Crazyflie 2.1 nano-quadrotor, an open-source 27 g
palm-sized COTS nano-drone. An STM32 MCU performs
low-level flight control tasks, i.e., state estimation and pro-
portional—integral—derivative (PID) cascade controller. The
nano-drone is extended with an Al-deck expansion board
tasked with onboard high-level intelligence. The Al-deck
features a GWT GAP8 multi-core RISC_V-based SoC, two-
level off-chip memories, i.e., 8 MB DRAM and 64 MB Flash,
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Fig. 2. Our prototype is based on COTS components: the Crazyflie 2.1
nano-drone, the Al-deck board, and an STM VL53LC5CX depth sensor.

and a monocular QVGA Himax HMO1B0O @ 60 Hz.

The GAP8 SoC is divided into two power domains: a
single-core fabric controller which orchestrates accesses to
external memories/sensors, and an eight-core cluster do-
main optimized for parallel computation of compute-intense
workloads, e.g., CNNs. The on-chip memory hierarchy is
composed of a 64 kB low-latency L1 memory shared among
the cluster cores and a 512kB L2 memory. The GAP8 also
features two DMA engines that efficiently automate data
transfers between memory levels and external peripherals,
such as the UART interface, which connects the GAP8 to
the STM32. The lack of data caches and floating-point units
requires, respectively, explicit data management in software
and the use of integer-quantized arithmetic.

We complement our platform with the multi-zone ranging
sensor VL33LC5CX! from STMicroelectronics, which is
based on ToF technology. This sensor is capable of acquiring
8x8px depth maps at 15Hz with a 313 mW power con-
sumption. In our nano-drone prototype, we employ a ready-
to-use COTS board from SparkFun? mounted on a Bitcraze
prototyping expansion board connected to the STM32 over
the 12C bus. Depth maps are then forwarded over UART to
the GAP8 SoC. For distances between 20mm and 20cm,
the datasheet specifies a measurement accuracy of £15mm,
while from 20cm to 4 m the error grows to +11%.

PULP-Frontnet: this CNN addresses the human pose
estimation aboard a nano-drone [2]. It processes monocular
gray-scale 160x96 px images and produces the relative pose
of the human subject w.r.t. the drone as regression output,
represented as 3D position in space (z,y,z) and rotation
angle w.r.t. the gravity z-axis (6). Its training is performed
in a supervised manner on real-world data collected in a
mocap-equipped room. We adopt this CNN architecture as
the backbone for our models, which we extend to take
advantage of depth information as described in Section I'V-
A. In addition, we use it in our experimental evaluation and
in-field tests as our SoA baseline.

Uhttps://www.st.com/resource/en/datasheet/v15315cx.pdf
Zhttps://www.sparkfun.com/products/19013

Simulator: we employ the open-source Webots simulator
to generate the training data for our CNN model. In this
fashion, we avoid error-prone and time-consuming dataset
collection for the CNNs’ training procedure, which would
require significant effort given our double sensory sources.
We leverage the human models provided by Webots, includ-
ing 3D models and walking gait animations, and the official
Crazyflie 3D model and controllers provided by Bitcraze?.
Section IV-B describes our extensions to integrate the multi-
zone ranging sensor, model its noise characteristics, and
collect data while randomizing the appearance of human
subjects and environments.

IV. VISION-DEPTH FUSION
A. Neural networks fusion methods

The sensor fusion and pose estimation task is tackled
with the CNN architecture, in Figure 3, based on a PULP-
Frontnet [2] backbone. It takes two inputs: a grayscale
image (160x96 px) and a depth map (8x8 px) produced
by the multi-zone ToF depth sensor; the output consists of 4
variables: (x,y, z), and the angle around the z-axis, (6).

We compare two approaches to fuse the data from the
two sensors. The first approach includes the 8 x8 px depth
map as one of the 64 channels in input to Block 3 of the
backbone, cropped and padded to match the 10x6 shape
expected by the block. We name this approach mid fusion and
show it in Figure 3-B. The second one processes the depth
map with a two-layer feed-forward Multi-Layer Perceptron
(MLP) network branch, in order to extract a vector of 4
features that are concatenated to the 1920 features of the
vision backbone of PULP-Frontnet. We name it late fusion
MLP and report it in Figure 3-C.

In addition to these two approaches, we consider two
baseline methods. These baselines process vision and depth
data with separate uni-modal sub-models, that are trained to
regress our 4 output variables (z, y, z, and 6). For a given
test sample, we then average the outputs of the two sub-
models to produce the final prediction. Both baselines share
the PULP-Frontnet architecture represented in Figure 3-A as
the vision-only sub-model, but differ in the depth-only sub-
model architecture. The Average Depth/Cam Mid baseline,
which reflects the mid fusion option above, adopts the last
part of the PULP-Frontnet network as a depth-only model:
it starts from Block 3 and receives the input depth map as
Figure 3-B. On the other hand, for the Average Depth/Cam
Late baseline, the depth-only model has the architecture
represented in Figure 3-C.

All CNNs are trained with SGD at a learning rate of 0.001
over 100 epochs, in which each epoch consists in one pass
on 150k images randomly sampled out of our 600k-image
training set. We select for testing the network that achieves
the best performance on a disjoint 100k-image validation set.
The loss function used for training is the sum of the Mean
Absolute Error evaluated on each predicted variable X, vy, z,
and 6.

3https://github.com/bitcraze/crazyflie-simulation
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Fig. 4. Four samples of image augmentations starting from the same camera
image (simulator), coupled with their depth maps.

B. Dataset collection

Our entire train and validation sets are acquired with
the open-source simulator Webots, implementing a domain
randomization technique [25]. We iterate among 3D models
of 27 persons, which vary in height, volume, and texture.
The joint poses of the person’s skeleton are also randomly
sampled among ten extracted from a walking gait animation.
The drone is then spawned in the environment with random
position (z, y, z) and orientation (roll, pitch, yaw), such that
it always faces the subject. Finally, we build the environment
(background and floor) by randomly sampling among 20
textures, and we populate it with 22 random objects.

On the simulator images, we perform several photometric
augmentations, such as motion blur, Gaussian blur, radial
distortion, vignetting, per-pixel Gaussian noise, and bright-
ness, to improve our networks’ robustness and minimize
the sim-to-real gap in the sensor data. For each acquired
image, we produce 25 augmented ones by applying all the
abovementioned techniques. While on the depth map, we
apply only per-pixel Gaussian noise based on the sensor
specifications (see Section III). In Figure 4, we report a
sample recorded in simulation and four different results of
our augmentation pipeline. Finally, we horizontally flip each
pair of samples (camera image and depth map), with 50%
probability, and adjust the recorded relative pose accordingly.
The complete dataset recorded with the simulator consists
of more than 700 k samples with output labels distributed as
reported in Figure 5. Finally, we complement this training
dataset with 3000 additional real-world samples (camera

Our CNNs exploration. A) the SoA baseline [2] used as the backbone of our Depth+Cam fusion. B) Mid-fusion model. C) Late-fusion model.
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Fig. 5. Sample distribution of our training dataset; each sample consists of
one camera image and depth map and the corresponding ground-truth pose.

images, depth maps, and poses) to serve as the testing set.

C. Dropout

We train our networks with two types of dropout. We
adopt standard dropout to drop a random subset of activations
in our fully-connected layer. In addition, we apply input
dropout [16] to force the network to learn from both inputs
with equal importance without overfitting on either. More
specifically, for every training pair composed of one image
and a depth map, we retain both inputs with probability pkeep,
while with probability paop One of the two inputs at random
is masked. In the mid fusion network, this works by masking
the corresponding feature maps in input at the 3rd block. In
the late fusion network, the features are masked at the end
of Figure 3-C.

D. System integration

Since the GAPS chip has no floating point unit and
performing the computation with software-emulated floats
is prohibitively expensive, we quantize weights, biases, and
activations, of our CNN, to 8 bits. The deployment phase,
with the tiling for efficient memory usage, is performed by
a tool that operates on an ONNX file describing the integer-
quantized network and produces C code for the management
of the memory used by the CNN. Since the network is
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Fig. 6. Average Pearson coefficient over 5 runs changing the dropout rate.

particularly lightweight, the tiling and memory swapping is
performed only between L1 and L2 memory, avoiding the
use of the L3 memory. The generated C code is integrated
into our depth and camera acquisition pipeline onboard the
Al-deck. Since the GAP8 SoC does CNN inference on the
Al-deck board, while the closed-loop control system runs
onboard the Crazyflie, the GAPS sends the estimated poses
to the STM32 via UART. The STM32 integrates them in the
closed-loop high-level controller and consequently creates a
setpoint for the low-level control system.

V. EXPERIMENTAL RESULTS
A. Regression performance

We evaluate the performance of our regression networks
by reporting two metrics on the real-world test set, separately
for each output variable: the Mean Absolute Error (MAE)
and the Pearson correlation coefficient among predicted and
ground-truth values. The former metric measures how close
the predictions are to the ground truth. The latter captures
whether predictions are linearly correlated to the ground
truth but disregards whether there are systematic biases in
the predictions. A Pearson score of O indicates that an
increase in the ground truth value does not yield an expected
increase in the predicted value, thus suggesting that the
model has no predictive ability and would be useless for
control. In contrast, a Pearson score of 1 indicates a model
whose outputs are perfectly linearly correlated to the ground
truth, but might potentially be offset by some constant or
multiplicative factor. When evaluating perception models for
downstream control tasks, the Pearson score is indicative of
the model’s ability to yield stable in-field performance.

Dropout strategy: to select the best input dropout scheme,
we test the three configurations reported in Figure 6: no
dropout (Pxeep = 1.0, parop = 0.0), uniform dropout (pyeep =
1/3 and pgrop = 1/3 for each input), and non-uniform dropout
(Pkeep = 1/2 and pgrop = !/4 for each input). We compare
these variants by considering the output variables z, y, and
0, disregarding =z since it has limited variability in our testing
data and therefore does not represent a good benchmark.
We observe that, compared to other dropout configurations,
non-uniform dropout yields, on average, a lower standard
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Fig. 7. Means and std. deviations on 5 different training for each model.

deviation and higher Pearson coefficient, highlighted with
the black dashed arrows in Figure 6.

Fusion approach: using non-uniform dropout, we then
compare the performance of the two fusion approaches: we
observe that mid-fusion outperforms late-fusion. Therefore,
we select the mid-fusion model with non-uniform dropout
for in-field tests. This model yields a Pearson coefficient for
the X, y, and @ variables of 0.50, 0.87, and 0.54, and a MAE
of 0.46m, 0.26 m, and 0.30rad, respectively.

Comparison with baselines: Figure 7 reports the perfor-
mance of the mid and late fusion models, named Depth+Cam
(sim), against several alternatives: i) the SoA [2] camera-only
approach, i.e., the PULP-Frontnet architecture, trained from
real-world data acquired in a different lab; ii) Cam (sim), the
same model trained on our simulated training set; iii) Depth
(sim), a depth-only model with an architecture matching the
depth branch of the mid-fusion or late-fusion models; iv)
Avg Depth/Cam (sim): the average of the outputs of the
two previous models.

Our mid-fusion approach improves the PULP-Frontnet
SoA in terms of the Pearson coefficient by 30%, 24%, and
128% on x, y, and 0, respectively. Furthermore, our approach
reduces the MAE w.r.t the SoA by 41%, 33%, and 21% on
X, ¥, and 6. The Cam (sim) network marginally outperforms
the SoA on the x output variable; on the y output variable,
it improves both the Pearson and the MAE metrics by 21%
and 27%. On the 0 variable, we measure a 60% improvement
in the Pearson coefficient, while the improvement on MAE
is negligible. The baseline Avg Depth/Cam (sim) approach
performs similarly to the vision-only based system trained
on our simulator training set. Figure 8 illustrates the perfor-
mance of our approach: a substantial improvement may be
observed especially on the y, and 6 variables, and for high x
values, where the SoA network significantly underperforms.



Cam SoA [2] Cam (sim) Depth+Cam (sim)

Output: x

Output: y

Predictions

Output: z

Output: 6

Ground truth

Fig. 8. Predictions (y-axis) vs. ground truth (x-axis) for each system, on
all outputs. Dashed diagonal lines correspond to a perfect predictor.

B. In-field evaluation

We put our system to the test in a closed-loop experiment,
reproducing the test setup of our baseline [2]: a human
subject moves along a predefined path of increasing difficulty
while the drone is autonomously controlled to stay in front of
the subject, at a distance of 1.5 m. Our experiment comprises
two test subjects in a motion capture-equipped environment
never seen during training. Flights are performed using
three models: the camera-only SoA [2]; Cam (sim); and
our proposed approach Depth+Cam (sim). We perform three
flights for each combination of subject and model (2x3x3 =
18 flights), plus one additional flight in which the drone is
controlled based on the perfect mocap position of the subject,
for a total of 19 test flights.

Table II reports the results for this experiment broken
down into three groups of metrics: overall path comple-
tion, regression performance, and control performance. We
quantify path completion in terms of mean elapsed flight
time and mean percentage of covered distance, terminating
an experiment run as soon as the subject leaves the drone
camera’s field of view. Control performance is quantified
with two error metrics: the mean horizontal distance error
ezy With respect to the desired position of the drone (i.e.,
1.5 meter in front of the subject); the mean absolute angular
error ep of the drone orientation with respect to its desired
orientation (i.e., looking towards the subject).

TABLE I
IN-FIELD EXPERIMENT RESULTS (AVERAGE OVER 6 RUNS). THE
SYMBOL * INDICATES THE NETWORKS TRAINED IN SIMULATION.

Flight Completed MAE Control error
Network .

time [s]  path [%] T y 0 ezy [m]  ep [rad]
Mocap 165 100 0.0 0.0 0.0 0.18 0.21
SoA [2] 140 85 079 023 079 0.99 0.75
Cam* 157 95 0.67 039 049 0.70 0.53
Depth+Cam* 165 100 036 012 0.32 0.42 0.37

We observe that the baseline PULP-Frontnet model strug-
gles due to issues in generalization to the unseen environment
and subjects, completing only 85% of the path on average.
On the other hand, models trained in simulation exhibit
higher resiliency, with the Depth+Camera model consistently
completing 100% of the path. Regression performance, mea-
sured in terms of MAE, captures the ability of a model to
estimate the subject’s pose accurately. The Depth+Camera
model achieves the best absolute performance, especially on
y with an MAE as low as 12 cm and less than half the MAE
of the PULP-Frontnet baseline on all outputs.

These improvements directly reflect on the control per-
formance, i.e., the accuracy of the closed-loop system in
tracking the subject along the path. Depth+Camera shows
the best performance by a large margin, less than double the
control error of the mocap-based flight, which represents the
control error lower bound achievable with perfect sensing.
Our supplementary video shows the in-field behavior of
the models, where the superior control accuracy of the
Depth+Camera (sim) model is clearly noticeable.

C. Discussion

Extensive tests have been done to evaluate how the in-
troduction of the depth sensor affects the physical behavior
of the drone. In fact, we tested the SoA with and without
the weight introduced by the sensor (not used for the pose
estimation). On an average of six runs, the configuration
with the depth sensor onboard has remarkably worse infield
control performance. The mean position error, €.y, is 0.99 m
for the configuration without the depth sensor and 1.24m
for the configuration with it. Evaluating the mean angular
error, eg the performance with the depth sensor onboard
deteriorates by 25% starting from 0.75rad of error of the
model without the sensor onboard as reported in Table II.

Further, we analyze the onboard performance of our
system. The proposed mid-fusion CNN takes advantage
of the additional depth information without increasing the
computational or memory requirements of the baseline CNN
and thus can reach the same maximum inference throughput
of 45.3fps on the GAP8 SoC. The current depth sensor
configuration, i.e., 8 X 8 px @ 15 Hz, results in a given depth
map being fed to the CNN for roughly three consecutive
inferences when running at the maximum throughput. Future
work should explore different trade-offs between depth map
resolution and frame rate (up to 4 x 4 px @ 60Hz) to
determine how they impact our method. Finally, we break
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Fig. 9. System power breakdown, while running the Depth+Camera model.

down our system’s power consumption in Figure 9: the
depth sensor accounts for an extra 313mW compared to
the baseline, while consumption of the rest of the system
remains unchanged. Although only 3.8% of the total power
budget, the depth sensor represents 45.8% of the power
budget dedicated to sensing and computation. Thanks to the
input dropout [16] applied at training time, we expect our
CNN’s inference-time performance to gracefully degrade in
case of missing inputs, which would enable us to selectively
enable the depth sensor only part of the time to save power.

VI. CONCLUSION

This work presents a vertically integrated 10cm nano-
drone system for the human pose estimation task on an
ultra-constrained SoC, i.e., sub-100mW compute power.
Combining a COTS 8x 8 multi-zone depth sensor with a low-
resolution monochrome camera, we explore different CNNs
to fuse these complementary inputs. We leverage the Webots
simulator to efficiently collect our multi-sensory training
data. Thanks to our dataset generation pipeline, which in-
cludes aggressive photometric augmentations, balanced label
distributions, and multiple environments configurations, we
deliver multiple sim-to-real models fully working in real-
world testing environments. Finally, we deploy the best
models aboard our prototype nano-drone and achieve a real-
time inference rate up to 45Hz, within 92mW. Our in-
field experimental results show an improvement of 58% and
51% of our depth+camera system w.r.t. a camera-only SoA
baseline on the horizontal and angular mean pose errors,
respectively. Finally, by employing only ready-to-use COTS
components, we foster the research community to adopt this
novel class of systems.
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