
Pointing at Moving Robots: Detecting Events from Wrist IMU Data*

Gabriele Abbate, Boris Gromov, Luca M. Gambardella, and Alessandro Giusti1

Abstract— We propose a practical approach for detecting the
event that a human wearing an IMU-equipped bracelet points at
a moving robot; the approach uses a learned classifier to verify
if the robot motion (as measured by its odometry) matches the
wrist motion, and does not require that the relative pose of the
operator and robot is known in advance. To train the model
and validate the system, we collect datasets containing hundreds
of real-world pointing events. Extensive experiments quantify
the performance of the classifiers and relevant metrics of the
resulting detectors; the approach is implemented in a real-world
demonstrator that allows users to land quadrotors by pointing
at them.

I. INTRODUCTION

We consider a system composed of one or more (ground
or flying) mobile robots and one or more nearby humans
instrumented with a wrist-mounted inertial sensor, e.g. a
smartwatch. In this context, we solve the problem of de-
tecting the event that one of the humans is pointing at a
moving robot with their straight arm, and following it for a
short time.

We detect this event by matching the robot motion (mea-
sured by the robot’s odometry module in its own fixed frame)
to the corresponding arm motion (measured by the IMU in
a different frame). Our approach is practical and easy to
deploy as it does not rely on additional sensors, and does
not assume that the humans or robots are co-localized with
respect to each other or with respect to any external frame.

Many systems involving human operators and robots op-
erating in the same space require the ability for an operator
to easily address one specific robot in its line of sight, e.g.
before providing a command or when calling for the attention

*This work is partially supported by: the Swiss National Science Foun-
dation (SNSF) through the National Centre of Competence in Research
(NCCR) Robotics; and the European Commission through the Horizon 2020
project 1-SWARM, grant ID 871743

1Gabriele, Boris, Luca, and Alessandro are with the Dalle Molle Institute
for Artificial Intelligence (IDSIA USI-SUPSI), Lugano, Switzerland. Email:
{gabriele.abbate,boris,luca.gambardella,alessandrog}@idsia.ch.

Fig. 1. Humans (a, b, c) equipped with IMU bracelets work in a shared
space with robots (R1, R2); at any time, one operator (a) can select any
moving robot (R2) by pointing at it for a few seconds. We propose a method
to detect these pointing events.

of that robot. For example: in rescue scenarios [1] with
several human rescuers and a team of flying robots [2], any
rescuer in the team might need to address a specific quadrotor
to assign it a specific mission or query its battery status; on a
factory floor with multiple cooperating Autonomous Ground
Vehicles and humans, an operator could notice one vehicle
malfunctioning and need to immediately stop it.

Pointing at robots is a desirable and efficient interaction
mechanism, because the act of pointing at physical entities is
trivial and intuitive for humans (e.g. children naturally point
at objects they are interested in or want to interact with [3]).

In general, detecting whether a human is pointing at a
robot implies to: a) perceive the human’s posture and—if
they are pointing at something—a pointing ray in 3D space
where the pointed object lies; b) determine whether the robot
is close enough to the pointing ray.

Our system perceives the human’s posture using only a
wearable IMU sensor on the wrist (such as a smartwatch),
which returns the wrist’s 3D orientation. This raises two
challenges: a) it is not easy to distinguish whether the oper-
ator is pointing at something or performing other unrelated
movements; b) even if we know that the operator is pointing,
the relative pose of the operator with respect to the robot is
not known; it is therefore impossible to determine whether
the robot is close to the pointing ray (and in case of multiple
robots, which robot is being pointed at).

Our solution relies on the assumption that the target robot
is moving and that the system is aware of the robot’s
trajectory, e.g. through the robot’s odometry module. Then,
we build upon our previous results [4] which describe how
to recover the relative pose of the robot with respect to the
operator, assuming that the operator is pointing at the robot
during a given period; this is achieved by finding the relative
transformation between the human and robot frames that
minimizes, for any timestamp within the period, the distance
between the robot position and the corresponding pointing
ray.

Using this capability as a building block, this paper
addresses the related but different problem of detecting
whether an operator is pointing at a moving robot, given IMU
readings and the robot’s odometry. After reviewing related
work (Section II) and formalizing the model (Section III) we
describe and motivate our main contribution (Section IV):
a learning-based solution that operates on features extracted
from the input streams; we also compare an alternative
approach operating on raw sensor data with a recurrent neural
model. We experimentally evaluate their performance on
real-world pointing datasets (which we release as supplemen-
tary material), and compare them to alternative approaches



and baselines; we extend and evaluate the approach on
settings with multiple operators and multiple robots; finally,
we deploy the system in a demonstrator where the user can
immediately land a robot by pointing at it for a few seconds.

II. RELATED WORK

Pointing gestures in robotics serve as an intuitive and
natural control interface for waypoint navigation, pick-and-
place tasks, for assessing joint human-robot attention, and
for selecting individual and groups of robots. These tasks
require the system to estimate a pointed direction (a pointing
ray) and a pointed location using either external or wearable
sensors.

A prevailing approach in robotics to estimate pointing rays
relies on various vision sensors: monocular cameras [5, 6],
stereo cameras [7], time-of-flight [8], and structured light
depth cameras [9], placed either in a shared environment or
directly on a robot.

The vision pipeline for pointing estimation [10] can be
summarized in the following four steps: 1) localization of
the human in 3D space relative to the robot; 2) segmentation
of human body parts; 3) extraction of characteristic points
(arm joints positions); 4) estimation of the pointed location.

On the contrary, using wearable inertial sensors requires:
1) reconstruction of the human body posture (arm joints
positions); 2) estimation of the pointed location; 3) trans-
formation of the estimated location to the robot’s frame.

Pourmehr et al. [11] developed a system that estimates the
pointing ray using a popular Kinect sensor (RGB-D camera)
mounted on a ground robot. The sensor provides an easy
access to the skeleton data, i.e. positions of body joints, in 3D
space that is expressed in the camera coordinate frame. The
authors compute the head-hand line (pointing ray) and check
if it intersects with a virtual sphere placed at the sensor’s
origin to select the robot.

Selection of individual and multiple robots does not nec-
essarily require localization of the user with respect to the
robot. Nagi et al. [12] proposed a method based on binary-
class (”pointing at me” and ”pointing at somebody else”)
hand gesture classification. Each robot individually classifies
the gesture and calculates the probabilistic scores for each
class. The robots in the swarm then share their scores with
each other to reach a swarm-level consensus on the robot
being pointed at.

Once the system knows coordinate transformations be-
tween the user and the robots, pointing gestures can be
efficiently used for agile control of fast-moving flying robots
on complex trajectories [13] or for guidance of slow-moving
ground robots [14], and for landing quadrotors on a precise
spot [15].

III. MODEL

A. Definitions and pointing model

Consider a standing operator, that may (or may not) be
pointing at a moving robot.

Let {H} be a reference frame located at the operator feet,
oriented in such a way that the z axis points upward; let {R}

P {R}
1

P {R}
0

P {R}
2

r{H}
0

r{H}
1

r{H}
2 {R}

{H}

Fig. 2. A user pointing to a moving robot, which measures its motion in
a fixed odometry frame {R}; another robot follows a different trajectory.

be an arbitrary fixed reference frame in which the robot’s
non-ideal odometry module measures its position, also ori-
ented in such a way that the z axis points upward. {H} and
{R} are related by an unknown coordinate transformation
T ∗.

If the operator is pointing at something, the pointing ray r
is a 3D half-line on which the point that the human intends to
indicate lies. We recover r in frame {H} using a simplified
version of the eye-finger ray cast (EFRC) method by Mayer
et al. [16], which defines r as the half-line originating at the
operator’s eyes and passing through the tip of the pointing
finger.

In particular, we assume that the operator is pointing with
a straight arm, whose orientation in space is measured by
a wrist-mounted IMU. We further assume that the eyes and
the shoulder are vertically aligned, and that parameters of the
operator body are approximately known (i.e. the shoulder and
eyes height above ground, and the arm length). This allows
us to compute the positions of the head and fingertip (and
thus r) with respect to the operator coordinate frame {H}.

For a short period of time τ , we collect the pointing rays
r{H}
i in the reference frame {H}, and the corresponding

robot positions P {R}
i in the frame {R}. This defines a set of

pairs C:

C = {
(
r{H}
1 , P {R}

1

)
, . . . ,

(
r{H}
N , P {R}

N

)
},

If the operator is pointing at the robot, we expect that the
points P {R}

i lay close to their corresponding rays r{H}
i .

In this case, a coordinate transformation T ∗ between
the two frames can be estimated using an optimization
procedure [4], which we briefly summarize below.

B. Relative Localization

For a given estimate T of the unknown transformation T ∗,
we can convert the robot positions P {R}

i defined in the robot
frame into the operator frame, i.e. P {H}

i = TP {R}
i . Using

these points we define a new robot ray q{H}
i that shares the

origin with the pointing ray r{H}
i , but passes through the

point P {H}
i .



Now, we can define the error function θ for a set C:

θ (T, C) = 1

N

N∑
i=1

6 (r{H}
i , q{H}

i ) (1)

where 6 (·) ∈ [0;π] represents the unsigned angle between
the directions of two rays. The error function θ (T, C) is
therefore 0 if and only if all points lie on the respective
ray, and positive otherwise.

We search for the coordinate frame transformation T ∗

between the operator frame {H} and the robot frame {R}
that minimizes the error function, i.e. that minimizes the
average unsigned angle between all the pairs of vectors r{H}

i

and q{H}
i : T ∗ = argminT θ(T, C)

The residual error θ(T ∗, C) indicates how well the trans-
formed robot positions fit the corresponding rays.

We express the transformation T ∗ as a composition of
a 3D translation [tx, ty, tz] and a rotation γz around the z
axis; we can instead ignore rotations around x- (roll) and
y-axis (pitch) because the z-axes of the operator and the
robot coincide and correspond to the opposite direction of
the gravity vector estimated by their IMUs. The problem
is therefore reduced to that of finding a four-dimensional
vector: ρ = [tx, ty, tz, γz] and can be handled with iterative
nonlinear optimization solvers.

IV. LEARNING-BASED POINTING DETECTION

A pointing detector is a function D(C)→ [0, 1] that: given
as input a set of pairs, each composed by a pointing ray r{H}

i

and the corresponding robot position P {R}
i , collected for a

given short period of time τ ; produces as output a scalar
pointing score, i.e. the probability the operator was pointing
at the robot R during the whole period τ . This output can
be interpreted as the probabilistic prediction by a binary
classifier with labels c0 (non-pointing) and c1 (pointing).

We expect a low score if the operator is not pointing at
anything (e.g. standing still, walking, or actively working);
crucially, we also expect a low score in case the operator is
pointing at something that is not our robot R (another robot,
or something unrelated). Furthermore, we assume that the
relative pose of {R} w.r.t. {H} is unknown.

This motivates the following observations.
• The target robot must be in motion; otherwise, it would

be impossible to differentiate the case in which the
operator is temporarily standing still (e.g. relaxing),
from the case in which the operator is perfectly pointing
at the non-moving robot. In fact, this configuration
allows one to localize the robot on any point along
the (static) pointing ray generated by the pose of the
operator.

• If two robots follow trajectories with the same shape
(i.e. there exists a similarity transform S such that, for
any time t ∈ τ , the position of one robot can be obtained
from the position of the other by applying S), it will not
be possible to differentiate whether the user is pointing
at one robot or at the other. This motivates our use of
randomly-generated trajectories in experiments.

We describe and compare two detection approaches. One
based on handcrafted features computed after relative local-
ization is found; and one that operates on raw data in C,
independent on the relative localization approach above.

A. Feature-based detector

First, the relative localization approach in Section III-B is
applied to C. This yields a set of robot positions P {H}

i (and
corresponding robot rays q{H}

i ), expressed in the same frame
as the pointing rays r{H}

i .
For each timestep i ∈ τ , we can now compute: a) the

angle error, eang,i = 6 (r{H}
i , q{H}

i ); b) the position error
epos,i, i.e. the point-line distance between P {H}

i and r{H}
i ;

c) the elevation and azimuth of ray r{H}
i ; d) the elevation

and azimuth of ray q{H}
i .

From these, we extract the following features and use them
in a supervised classification approach.
• F1: mean and standard deviation of eang,i for i ∈ τ ;
• F2: mean and standard deviation of epos,i for i ∈ τ ;
• F3: the Pearson correlation coefficient between the rate

of change of the elevation of r{H}
i , and the rate of

change of the elevation of q{H}
i .

• F4: the Pearson correlation coefficient between the rate
of change of the azimuth of r{H}

i , and the rate of change
of the azimuth of q{H}

i .
In case the operator is indeed pointing at the robot, we

expect the average error eang,i to be low (in fact, this means
that the robot positions align well with the pointing rays).
However, if the operator is still (but the robot moves), the
relative localization approach will still perfectly minimize
eang,i by localizing the robot infinitely far along the direction
of the static pointing ray. This motivates the choice of F2,
because epos,i would penalize this event.

F3 and F4 capture different aspects with respect to F1
and F2: in particular, we expect them to capture whether the
motion of the pointing ray matches (in direction and speed,
not necessarily in magnitude) with the motion of the robot
ray. Because they capture the consistency of motion rather
than a geometric alignment, we expect that these features
represent complementary information with respect to F1 and
F2—a hypothesis we verify in Section V.

Using a concatenation of F1, F2, F3 and F4 (6 total
features) to represent an instance, we train a Random Forest
classifier to predict whether the instance has class c0 or c1.

B. Raw-data detector

As an alternative approach, we train a detector that does
not rely on the relative localization procedure nor on hand-
crafted features. In particular, we consider a sequence-to-
scalar recurrent neural network based on a single LSTM cell
stacked with a fully connected layer (42k total parameters).
The model takes as input two data streams: a stream of raw
IMU data (which, in the feature-based approach, was used
to reconstruct wrist joint movements); and a stream of robot
odometry information. Those streams are synchronized at the
lowest frequency available (20 Hz from the drone odometry)
and combined to produce a 13 features vector (positions and



Fig. 3. Data acquisition setup.

velocities for the robot over 3 axes; 3D acceleration and
orientation as quaternions for the IMU). At each timestep,
the model outputs the pointing score. LSTM networks have
many successful applications in Human Activity Recognition
tasks based on wearable data [17, 18] and can capture
complex temporal patterns in the input signals.

V. EXPERIMENTAL SETUP

A. Hardware

Experiments are conducted in an indoor flying arena
using a nano-quadcopter (Bitcraze Crazyflie 2.0 [19]), with
onboard visual odometry using a Bitcraze Flow v2 deck
equipped with a downward-looking optical flow sensor
(PMW3901); the drone accepts waypoints via ROS interface
and streams its position at a rate of 20 Hz in an arbitrary
fixed odometry frame.

The operator wears an inexpensive IMU bracelet (Mbi-
entlab MetaWearR+ [20]) that has the form factor of a
wrist smartwatch. The device is equipped with a 3-DoF
accelerometer, 3-DoF gyroscope, and 3-DoF magnetometer;
readings are fused onboard to output an accurate estimation
of the wrist’s 3D-orientation in an arbitrary fixed reference
frame whose z-axis points upward. The data is streamed to
the host PC at a rate of 50 Hz rate via a Bluetooth 4.0 link.

B. Data collection

We fly the drone on random trajectories generated as
follows. First, the drone is manually flown to a position
far from any obstacle; then, we sample a sequence of 3D
points randomly distributed within a cylinder (radius of
1.5m, height 1m) centered at the drone’s initial position. At
random intervals (uniformly distributed between 1 and 3s),
we send the next waypoint in the sequence to the drone that
would override the previous target. This generates random
3D trajectories which stay confined in a limited area. The
drone controls and measures its pose using the onboard visual
odometry module.

We collect synchronized IMU and odometry data while
the drone follows its trajectory. The user stands in place and
points at the drone with a straight arm. This way we collected

Fig. 4. Generating datasets from collected data.

20 runs (“pointing runs”) each 1 minute long with different
users, that were standing at random positions relative to the
drone and at a distances ranging from 1 to 15 meters.

We also collect “non-pointing runs” totalling 40 minutes,
containing IMU data sampled while users perform various
tasks (walking, gesturing, moving boxes...), including oc-
casionally pointing at various objects. These runs do not
contain any trajectory information.

C. Dataset Generation

We use half of the runs (both pointing and non-pointing)
for training (30 minutes total), and the remaining for testing
(30 minutes).

For a given window length τ ∈ {1, 2, 3, 4, 5, 8} seconds,
we generate one training dataset (using all training runs) and
one testing dataset (using all testing runs). Each dataset is
composed by 5k c0 instances, and 5k c1 instances. Each
instance is a sequence of 20 · τ pairs (P {R}

i , r{H}
i ) sampled

at 20 Hz from the runs, as follows.
As shown in Figure 4, c1 instances are built by sampling

τ seconds of synchronized IMU and odometry data from a
pointing run. Half of c0 instances (2.5k per dataset) are built
by sampling odometry data from a pointing run, and IMU
data from a non-pointing run. The other half of c0 instances
are built by sampling odometry data from a pointing run,
and IMU data from a different pointing run (or the same run
at a different time). The former half represents instances in
which a user is not pointing at a robot. The latter represents
instances in which a user is in fact pointing, but at a different
robot (which is following a trajectory not compatible with
the user’s motion).

D. Implementation and model training

The feature-based detectors are implemented using the
Scikit-learn [21] library. The nonlinear optimization problem
for relative localization is solved with the quasi-Newton
method of Broyden, Fletcher, Goldfarb, and Shanno [22] as
implemented in the optimize.minimize function from
the SciPy library [23], with default parameters.

The LSTM detector is implemented and trained with the
pytorch [24] library.



Model τ = 1 2 3 4 5 8

Angle residual [4] 0.68 0.74 0.79 0.82 0.84 0.85
Angle residual RF 0.70 0.77 0.81 0.85 0.86 0.86
F1+F2 0.80 0.86 0.89 0.92 0.94 0.94
F1+F2+F3+F4 (full) 0.89 0.93 0.94 0.96 0.96 0.97
LSTM 0.90 0.93 0.94 0.93 0.94 0.93

TABLE I
AUC VALUES ON THE TESTING SET FOR DIFFERENT MODELS. THE

MODEL USED FOR FURTHER EXPERIMENTS IS MARKED IN BLUE.

The code for replicating our experiments is released as
supplementary material.

VI. EXPERIMENTAL RESULTS

We first quantify and compare the performance of the
different classification approaches on the test set. Then, we
apply the approaches on a sliding window to assess their
performance when used for detection. Finally, we extend our
results to the multi-operator multi-robot case, and describe
the real-robot demonstrator shown in the supplementary
video.

A. Performance on the test set

We evaluate each classification approach by training the
model on the training set, and running inference on all
instances of the testing set. This generates a pointing score
for each testing instance, for which we also have the ground
truth class. We repeat the experiment for different lengths of
the window τ .

We quantify the overall performance of each binary classi-
fier using the Area Under the ROC Curve (AUC) metric. One
important advantage of the AUC metric is that it operates
directly on the output score, and does not depend on the
choice of a threshold; the AUC value can be intuitively
interpreted as the probability that a randomly-chosen c1
instance has a score higher than the score of a randomly-
chosen c0 instance. It follows that a AUC of 1.0 indicates
a ideal classifier (since there must exist a threshold that
separates c1 from c0 instances), whereas a AUC of 0.5
indicates a uninformative classifier. For a given threshold
t, we also compute the accuracy (ACC); the False Negative
Rate (FNR), i.e. the fraction of c1 instances that score lower
than t; and the False Positive Rate (FPR), i.e. the fraction of
c0 instances that score higher than t.

Table I compares the AUC values between different clas-
sification approaches, for different window lengths τ . We
observe that the detection approach proposed in [4], i.e. using
a threshold on the angle residual, performs poorly in all
cases; using a more powerful Random Forest classifier on
the same feature does not significantly improve performance,
which motivates the need for further features; we confirm that
F1+F2 are indeed informative, and that F3+F4 carry useful
complementary additional information. In the following ex-
periments, we focus on the full model (F1+F2+F3+F4) with
τ = 5 s.

Fig. 5. Metrics as a function of the threshold for the full model with τ = 5
seconds.

Interestingly, the LSTM model outperforms the hand-
crafted approach on short windows, but not on long windows.
This could be caused by the fact that the relative localization
approach (on which the handcrafted approach relies) yields
more relevant and robust results for long windows than
for short ones; on long windows, the explicit geometric
modeling is therefore more valuable, and the LSTM is
unable to capture the same information. In contrast, on short
windows the LSTM might be advantaged by its ability to
capture other cues for matching arm and robot motions
(such as acceleration patterns) that are not represented in
the handcrafted approaches.

Figure 5 considers the full model with τ = 5 and reports
various metrics as a function of the choice of the threshold.
In particular, we separately report the FPR for c0 samples
in which the user was pointing at a different robot; and the
FPR for c0 samples in which the user was doing something
different than pointing. We observe that the former type of
c0 samples are harder (i.e. cause more false positives) than
the latter.

B. Application to pointing detection

In order to detect events in a stream of IMU and odometry
data, we follow a detection-by-classification approach; for
every new pair of odometry and IMU readings we receive
(i.e. at a rate of 20 Hz), we apply the classifier to a sliding
window containing the last τ seconds of data, which yields
a pointing probability; if this value exceeds a threshold, we
detect a pointing event. In case we have multiple operators
and/or multiple robots, we apply the classifier to every robot-
operator pair.

Figure 6 reports data from an experiment lasting 30
seconds with one operator and two robots, each flying a
different random trajectory; during the first 15 seconds, the
operator is not pointing at any robot. At t = 15, the operator
starts pointing at one of the two robots. We apply the full
model with τ = 5 s to generate pointing probabilities for
each of the two robots. We observe outputs generated at
a given time t correspond to a window at time [t − 5, t].
Shortly after t = 15, the pointing probability for both robots



Fig. 6. Pointing probabilities for one operator and two robots; the operator
starts pointing at one robot (black) at t = 15.

is still low, because only part of the sliding window contains
actual pointing data. At time t = 20, the entire window
contains valid pointing data, and the output for the pointed
robot exceeds the threshold; this generates a pointing event.
We observe that the output for the other robot stays well
below the threshold.

C. Pointing detection performance

We now study the performance of pointing detection for
different values of the detection threshold. In particular, we
are interested in quantifying: a) the delay before the pointing
event is detected; and b) the probability that the event refers
to the correct robot, in case two robots are considered.

To do so, we consider 1500 (partly-overlapping) 30 second
intervals randomly extracted from the training runs. For
each interval, we sample the IMU data, and two odometry
streams; one from the robot that was being pointed; and one
from a different run – representing a robot flying a different
trajectory.

For each interval, we apply the trained model (full, τ =
5s) on a sliding window; this yields a sequence of (30 −
5) · 20 = 500 pointing probability values when considering
the correct odometry; and a different sequence of 500 values
when using the wrong odometry.

Then, for each interval and for each choice of threshold,
we compute the “delay to detection” metric as the end time
of the first window which exceeds the threshold when using
the correct odometry stream. For example, if the first element
of the sequence already exceeds the threshold, the total delay
is 5.0 + 0.0 seconds. If the first 20 elements are below the
threshold but the 21th exceeds it, the total delay is 5.0 + 1.0
seconds. Table II reports the mean delay to detection over
all 1500 intervals for three threshold values We observe that
raising the threshold, increases the mean delay to detection.

For each interval and threshold, we also compute whether
the identified robot is the correct one. To do so, we check
if the first pointing probability that exceeds the threshold
is in the sequence using the correct odometry, or in the
sequence using the wrong odometry. In case of a tie, we
choose the option with the higher probability. Table II reports
the robot identification accuracy, i.e. the percentage of the
1500 intervals in which the correct robot would be identified
among the two.

Threshold

0.50 0.55 0.60

Mean Delay to Detection [s] 5.0 + 1.7 5.0 + 2.6 5.0 + 2.7
Robot Identification Accuracy 79.8% 93.4% 98.3%

TABLE II
DETECTION METRICS FOR THREE VALUES OF THE THRESHOLD

Fig. 7. Top: first person view while following a complex trajectory; bottom:
application example with different hardware (handheld smartphone as IMU,
DJI Tello quadrotor).

D. Demonstrator

The supplementary video shows our demonstrator, in
which a drone (Figure 7 top) follows a random trajectory in
a confined area indefinitely; any user equipped with an IMU
bracelet, from any nearby location, can cause the drone to
immediately land by pointing at it for a few seconds.

VII. CONCLUSIONS

We presented a practical approach for detecting the event
that an operator points at a moving robot, based on learned
classifiers operating on short windows containing paired
streams of odometry and wrist orientation data. We collected
datasets containing hundreds of real-world pointing events
with matching IMU and odometry data, which we used to
validate our approach. Extensive experiments quantify the
performance of the classifiers and relevant metrics of the
resulting detectors; we also show a real-world demonstrator.
Videos, data and code is released as supplementary material.

REFERENCES

[1] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov,
K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert,
D. Floreano, L. M. Gambardella, R. Siegwart, and



D. Scaramuzza, “The current state and future outlook
of rescue robotics,” Journal of Field Robotics, pp. 1–21,
Aug. 2019.

[2] J. Cacace, A. Finzi, V. Lippiello, M. Furci, N. Mimmo,
and L. Marconi, “A control architecture for multiple
drones operated via multimodal interaction in search &
rescue mission,” SSRR 2016 - International Symposium
on Safety, Security and Rescue Robotics, pp. 233–239,
2016.

[3] G. Butterworth, Pointing: Where language, culture, and
cognition meet. Manwah, NJ: Lawrence Erlbaum
Associates, 2003, ch. Pointing is the royal road to
language for babies, pp. 9–33.

[4] B. Gromov, L. Gambardella, and A. Giusti, “Robot
identification and localization with pointing gestures,”
in 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Oct. 2018, pp. 3921–
3928.

[5] M. Pateraki, H. Baltzakis, and P. Trahanias, “Visual
estimation of pointed targets for robot guidance via
fusion of face pose and hand orientation,” Computer
Vision and Image Understanding, vol. 120, pp. 1–13,
2014.

[6] M. Monajjemi, S. Mohaimenianpour, and R. Vaughan,
“UAV, come to me: End-to-end, multi-scale situated
HRI with an uninstrumented human and a distant
UAV,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), no. Figure 1.
IEEE, oct 2016, pp. 4410–4417.

[7] K. Nickel and R. Stiefelhagen, “Pointing Gesture
Recognition based on 3D-Tracking of Face , Hands and
Head Orientation Categories and Subject Descriptors,”
Proceedings of the 5th international conference on
Multimodal interfaces, pp. 140–146, 2003.

[8] D. Droeschel, J. Stückler, and S. Behnke, “Learning to
interpret pointing gestures with a time-of-flight cam-
era,” Proceedings of the 6th international conference
on Human-robot interaction - HRI ’11, pp. 481–488,
2011.

[9] A. Cosgun, A. J. B. Trevor, and H. I. Christensen,
“Did you Mean this Object?: Detecting Ambiguity
in Pointing Gesture Targets,” in HRI’15 Towards a
Framework for Joint Action Workshop, 2015.

[10] J. Suarez and R. R. Murphy, “Hand gesture recognition
with depth images: A review,” Ro-Man, 2012 Ieee, pp.
411–417, 2012.

[11] S. Pourmehr, V. Monajjemi, J. Wawerla, R. Vaughan,
and G. Mori, “A robust integrated system for selecting
and commanding multiple mobile robots,” Proceedings
- IEEE International Conference on Robotics and Au-
tomation, pp. 2874–2879, 2013.

[12] J. Nagi, A. Giusti, L. M. Gambardella, and G. A.
Di Caro, “Human-swarm interaction using spatial ges-
tures,” in IEEE International Conference on Intelligent
Robots and Systems, 2014, pp. 3834–3841.

[13] B. Gromov, G. Abbate, L. Gambardella, and A. Giusti,
“Proximity human-robot interaction using pointing ges-

tures and a wrist-mounted IMU,” in 2019 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
May 2019, pp. 8084–8091.

[14] M. Tölgyessy, M. Dekan, F. Duchoň, J. Rodina, P. Hu-
binský, and L. Chovanec, “Foundations of Visual Lin-
ear Human–Robot Interaction via Pointing Gesture
Navigation,” International Journal of Social Robotics,
vol. 9, no. 4, pp. 509–523, 2017.

[15] B. Gromov, L. Gambardella, and A. Giusti, “Guid-
ing quadrotor landing with pointing gestures,” in
Human-Friendly Robotics 2019, F. Ferraguti, V. Villani,
L. Sabattini, and M. Bonfè, Eds. Cham: Springer
International Publishing, Feb. 2020, pp. 1–14.

[16] S. Mayer, V. Schwind, R. Schweigert, and N. Henze,
“The Effect of Offset Correction and Cursor on Mid-
Air Pointing in Real and Virtual Environments,” Proc.
of the 2018 CHI, 2018.

[17] Y. Guan and T. Plötz, “Ensembles of deep lstm learners
for activity recognition using wearables,” Proceedings
of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 1, no. 2, pp. 1–28, 2017.

[18] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[19] Bitcraze. The crazyflie nano quadcopter. https://
bitcraze.io.

[20] Mbientlab. Wearable technology for healthcare. Mbi-
entlab official web-page. https://mbientlab.com/.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[22] J. Nocedal and S. Wright, Quasi-Newton Methods.
New York, NY: Springer New York, 2006, pp. 135–
163.

[23] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson,
E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contribu-
tors, “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp.
261–272, 2020.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imper-
ative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

https://bitcraze.io
https://bitcraze.io
https://mbientlab.com/


Buc, E. Fox, and R. Garnett, Eds. Curran Associates,
Inc., 2019, pp. 8024–8035.


	INTRODUCTION
	Related work
	Model
	Definitions and pointing model
	Relative Localization

	Learning-based pointing detection
	Feature-based detector
	Raw-data detector

	Experimental setup
	Hardware
	Data collection
	Dataset Generation
	Implementation and model training

	Experimental Results
	Performance on the test set
	Application to pointing detection
	Pointing detection performance
	Demonstrator

	Conclusions

