
PointIt: A ROS Toolkit for Interacting with
Co-located Robots using Pointing Gestures

Gabriele Abbate, Alessandro Giusti, Antonio Paolillo, Boris Gromov,
Luca Gambardella, Andrea Emilio Rizzoli, Jérôme Guzzi

Dalle Molle Institute for Artificial Intelligence, USI-SUPSI, Lugano, Switzerland
gabriele.abbate@idsia.ch

Abstract—We introduce PointIt, a toolkit for the Robot Oper-
ating System (ROS2) to build human-robot interfaces based on
pointing gestures sensed by a wrist-worn Inertial Measurement
Unit, such as a smartwatch. We release the software as open-
source with MIT license; docker images and exhaustive instruc-
tions simplify its usage in simulated and real-world deployments.

Index Terms—pointing gesture, human robot interaction, am-
bient intelligence, ROS

I. INTRODUCTION

Pointing gestures (i.e., using an extended arm to indicate
something in the environment) are widely used by humans
when interacting with other humans sharing the same space;
they represent an intuitive and efficient way to communicate
an approximate nearby position (“wait there, please”) or to
select an entity that is visible to both parties (“pick this
package and bring it to that person”) [1]. In most cases,
except when extreme accuracy is required, alternative ways
to express the same concepts are much less efficient in terms
of communication speed and cognitive load, for both parties.

Pointing gestures are therefore an attractive communication
mechanism for humans interacting with robots located in the
same environment. For example, they can be used to intuitively
select [2] and control [3], [4] mobile robots, e.g. to indicate
objects on which the robot should act [5] or positions that it
should reach; similar applications are also possible in domotic
and ambient intelligence scenarios, e.g. indicating a light or
an appliance to turn it on, or a landmark to query information
about it.

Gestures can be sensed by sensors placed on the robot [6],
in the environment [7], or worn by the user [8]–[10]. In this
work, we focus on the third case and assume that the operator
wears a wristband or smartwatch, equipped with an Inertial
Measurement Unit (IMU) whose readings are streamed in real-
time to the system. This sensing setup does not enforce any
requirement on the robot’s sensing suite and processing power,
and makes the system inherently robust to visibility, lighting,
or occlusion issues.

In this context, our main contribution is PointIt, a novel
open-source, modular, ROS2-compliant software toolkit that
can be used to implement Pointing-based User Interfaces
(PUIs). It is composed of two main parts.

This work is supported by the European Commission through the Horizon
2020 project 1-SWARM, grant ID 871743.

The first part comprises task-agnostic code with three main
functionalities.

(i) Using IMU readings to reconstruct the 3D pointing ray
along which lies the object or location being pointed at.
The pointing ray is expressed in a human-centered frame
of reference.

(ii) Applying a relative localization [11] algorithm that, given
a set of pointing rays and the corresponding known
locations in a fixed world frame, returns an estimate of
the relative pose of the operator in the environment. This
functionality is only needed when the operator’s location
is not otherwise known.

(iii) Intersecting pointing rays (expressed in the world frame)
with a map of the environment to compute the pointed
location or object.

The toolkit makes it easy to implement systems such as the one
proposed by Gromov et al. [12], [13], in which a user indicates
a point on the ground while a small quadrotor continuously
maneuvers in order to hover 20 cm above the pointed location
(Figure 1 left); by relying on real-time feedback provided by
the robot’s own position, the user can achieve high control ac-
curacy, even when the reconstructed pointing rays are affected
by significant systematic errors.

The second part, which relies on the functionality imple-
mented in the first, includes code tailored to applications in
which: pointing gestures are used to select discrete objects
placed at known locations in space; fixed LED strips are used
to provide real-time feedback to the user during the process
(e.g. by displaying a cursor updated in real-time, indicating
the position currently being pointed at). One such application
consists in selecting packages on a moving conveyor belt by
pointing at them (Figure 1 right).

In Section II we describe the foundations of the pointing-
based user interface. Then, in Section III we describe the
ROS2-compliant implementation of the toolkit, and in Sec-
tion IV we discuss how the toolkit is used to build user-
interfaces in concrete scenarios. Finally, in Section V we
describe the actual software release with installation and usage
instructions.

II. POINTING-BASED INTERACTION

In this section, we briefly summarize the main building
blocks used to develop the contributed pointing-based user
interface toolkit as illustrated in Figure 2.



Fig. 1. Examples of deployment of IMU-based pointing interfaces built on
top of PointIt. Left: a user controlling a tiny drone. Right: a user selecting
packages on an industrial conveyor belt.

Fig. 2. Pointing-based interaction. A user, whose pointing ray is reconstructed
in the {H} frame, is localized with respect to the {W} frame. Thus, they are
able to indicate objects in {W}. In this example, using the pointing gesture,
the user can select packages moving on a belt, visualizing a pointing cursor
on the LED strips, which provides the user with a feedback.

A. Pointing Model

Let {H} be the user reference frame, placed at the center of
the user’s feet with the z-axis pointing upwards; we implement
a simplified version of the eye-finger ray cast method [14]
to reconstruct the pointing ray in frame {H}: the ray origi-
nates between the user’s eyes and passes through their index
fingertip. We compute the user’s pointing ray measuring the
arm orientation with the wrist-worn IMU; we assume that the
user points while keeping the arm straight and that the user
measurements are approximately known (height of shoulder
and eyes; arm length).

B. Relative Localization

If the user is not already localized with respect to a fixed
world frame (e.g. because its position while interacting is con-
strained, or because it is tracked by an external component),
we provide a pointing-based localization procedure [11] to
estimate the pose of the user in a fixed world frame {W}. To
this end, the user is asked to point at several (at least two)
known world locations. This can be implemented by pointing:
(i) at a robot or drone while it moves along a known path; or
(ii) at two (or more) static targets with known locations, e.g.
fixed LEDs turned on in a predetermined sequence and timing.
During this procedure, we record the user’s arm orientation,
reconstruct the pointing ray in {H}, and then compute the
rigid transform between {H} and {W} that minimizes the

average angle between the measured pointing rays and the
known target locations [11].

C. Feedback

The reconstructed pointing ray is not very accurate due to
factors such as: the simplified human pointing model; inac-
curate assumptions about the body pose (users may not point
with their arm straight); sensing errors (e.g., IMU drift and
noise); and inaccurate relative localization of the user in the
world. Thus, to implement a convenient pointing-based user
interface, we need to provide enough visual feedback about
the estimated pointed location so that users can compensate for
inaccuracies, adapting and correcting their pointing to achieve
higher levels of accuracy. Such a feedback can be provided
in different ways. For instance, while controlling fast moving
drones, the position of the robot itself provides an immediate
visualization of the user’s pointing. With slow moving ground
robots or in scenarios where a suitable infrastructure is not
available, a laser pointer or a spotlight can be used to provide
real-time feedback about the pointed locations. As an alterna-
tive, LED strips or matrices can display a pointing cursor.

D. Pointing-based User Interface

A pointing-based user interface allows a user to interact with
a system and perform different tasks using pointing gestures.
It needs three inputs: (i) the user’s position in {W}, (ii) the
user’s pointing ray in {H}, and (iii) a map of the environment
in {W}. Using (i), the PUI intersects (ii) with (iii) to compute
the pointing cursor, which is a 3D point in {W}. To compute
it, we need to intersect a pointing ray with the environment.
For example, to provide navigation goals to a ground robot or
a drone flying at a fixed altitude, we intersect the ray with a
horizontal plane.

The pointing cursor is then used to provide a closed-loop
visual feedback to the user. Depending on the actual task, the
PUI defines specific actions that can be performed (e.g., hover
to select an object), similar to how GUIs are programmed.

In general, interaction with a PUI occurs as follows:
1) the system is idle;
2) the user triggers the interaction (e.g., by pressing a

button);
3) if needed, the user performs a localization procedure to

compute their pose in {W};
4) the user points at something: the system reconstructs

the pointing cursor and visualizes a continuously-updated
feedback about its location; a task-specific component
uses the pointing cursor to control the system (e.g., to
indicate a navigation goal to a robot or to select an object
to be manipulated);

5) the user stops interacting (e.g., by pressing a button).

III. SOFTWARE ARCHITECTURE AND IMPLEMENTATION

Our system is composed of different ROS2 nodes (see
Fig. 2), which allow code modularity and reuse. Here we
describe each of them, along with their expected inputs and
outputs, marking them either as task-agnostic or task-specific



Fig. 3. Software architecture overview. Each solid black rectangle represents
a ROS2 node. The arrows denote the input and output messages exchanged by
the nodes. Grey-dashed rectangles on the right represent information coming
from external nodes.

(for the nodes implementing the object selection functionality).
We also describe the specific task used to test our interface,
which is part of the code release.

A. Pointing Model Node (task-agnostic)

This node runs the pointing model described in Section II-A.
Given the user’s body measures, it uses the orientation returned
by wrist IMU to reconstruct the pointing ray in {H}.

B. Relative Localization Node (task-agnostic)

This node is in charge of publishing the coordinates trans-
form between {W} and {H}, computed with the relative
localization approach described in Sec. II-B. This node can
be optionally removed provided that the same transform is
published by an external tracking system or is manually fixed.
For instance, our release contains the concrete implementation
of a relative localization procedure that uses two LED lights
whose positions are known in {W}: 1) both LEDs are turned
off; 2) the user triggers the beginning of the procedure; 3) the
first LED turns on and the user points at it; 4) the first LED
turns off, the second LED turns on and the user points at it;
5) the transform is computed and published to ROS2 tf.

C. PUI Node (task-agnostic)

This node receives the pointing rays from the pointing model
node, the user’s position in {W} from the relative localization
node, and a map of the environment. All those inputs are used
to output the pointing cursor.

In the toolkit, we implement the following approach to
intersect, with a tolerance, pointing rays with objects stored
in the map of the environment. We discretize objects in sets

of 3D points that we store in a k-d tree. We also discretize
the pointing ray to query the k-d tree for the nearest neighbor:
we place the pointing cursor on the nearest neighbor if it is
within the desired tolerance.

D. Object Selection Node (task-specific)
This node is specific for the task of selecting an object. It

requires as input (i) the pointing cursor from the PUI node and
(ii) a list of objects and their positions in {W}. The output is
a list of selected objects.

We provide two methods for triggering the object selec-
tion/deselection. In the first method, if for all the timesteps in a
time window the pointing cursor is overlaying the same object,
then the object state is toggled; this method is not robust to
small movements: if the cursor “flickers”, the selection timer
resets. The second method compensates for this problem by
requiring that the object is overlaid only for a fraction of
timesteps in the time window.

E. LED Strip Feedback Node (task-specific)
This node is specific to provide feedback on LED strips. In

particular, knowing the LED strips locations within {W}, it
displays different feedback, based on the inputs received:

• the pointing cursor position;
• the position of objects;
• the state of each object (whether the object is currently

selected; whether the object is being hovered by the
cursor).

IV. APPLICATIONS

A. An interface to select packages on a conveyor belt
We used our toolkit to implement a PUI that allows users

to select packages (e.g. faulty or suspicious) on an industrial
conveyor belt by pointing. Selected and non-selected packages
are then dispatched in different unloading bays. In this context,
LED strips placed along the belts provide feedback for the
pointing cursor, tracked position of each package, and state
of each package (non-selected, hovered, selected). Relative
localization of the user is also based on pointing and relies
on two independent wall-mounted LED lights.

Our release includes code to reproduce this task both in
simulation and in a real deployment. This includes ROS2
drivers to reproduce our hardware setup, nodes to control and
simulate the conveyor system (e.g. packages feeding, tracking,
and dispatching), nodes to produce all the available feedback,
and CoppeliaSim [15] scenes to simulate the interaction. Both
setups are depicted in Figure 4.

B. Other Tasks
The proposed toolkit is general and can tackle a variety

of tasks. For example: using pointing to precisely control a
fast quadrotor in real time [12]; using pointing to program
a trajectory for a slow ground robot, using a robot-mounted
laser turret to shine a pointing cursor on the floor, for feed-
back [3]. Additional target applications include using pointing
for location or object selection for a robotic manipulator, e.g.
for pick and place tasks on large workspaces.



Fig. 4. Testing scenarios. Left: simulation. Right: real world. Top: users
controlling a pointing cursor on the LED strips. Bottom: users selecting
packages on a conveyor belt with LED feedback.

V. SOFTWARE RELEASE

Our software is available at the following link

https://github.com/Gabry993/pointing-user-interface-hri

In this repository, together with the entire source code, we
provide a thorough README file that explains how to easily
install and replicate our system using docker containers.
This also gives the possibility to test our software in simulated
scenarios, removing any hardware requirement, as explained
in Section V-A. Finally, we documented all the parameters
exposed by the PUI ROS2 launch files, which are also sum-
marized in Sec. V-B. This, with the well-defined interfaces to
our system, makes the components of the toolkit re-usable and
suitable to be integrated into different systems.

A. Testing Our Software

We release docker containers to easily set up and run our
system, with docker and docker-compose as the only
software prerequisite. We provide the code to test our interface
in 4 different scenarios, which can be run either in simulation
or in the real world:

• scenario_1: the user points at LED lights to change
their color;

• scenario_2: the user points along LED strips to move
a cursor over them (Figure 4, top);

• scenario_3: the user points to select colored moving
segments drawn on LED strips;

• scenario_4: the user points to select packages moving
on a conveyor belt, with LED strips feedback (Figure 4,
bottom).

To run the simulated scenarios, we provide a docker container
containing CoppeliaSim and scenes recreating the environ-
ment of our laboratory. Here, a simulated user will perform
the interaction. For the real-world scenarios, we provide all
the information and code to replicate also our hardware setup.

The following summarizes the steps to run a scenario in
docker:

1) (for simulation only) start the simulation container, open
the desired scenario and start the simulation;

2) (for real-world only) start the real world container, which
will set up all the hardware related components (i.e. IMU
and LEDs);

3) start the container related to the desired scenario. This
will start all the PUI-related nodes and the supervisor in
charge of controlling the demo state.

B. Launch Files

Another README file is available in the repository,1 which
describes the two main ROS2 launch files that expose all the
parameters to set up the PUI:

• user.launch starts all user-specific nodes to interact
with the system, which includes the node running the
pointing model, the relative localization node, and a node
supervising the state of the interaction. Multiple users
need to launch one copy each with different namespaces.

• scenario_1_2_3_4.launch, which starts the node
implementing the PUI; it requires parameters such as the
path of the environment map, the time of overlay required
to select an object when pointing and the pointing error
tolerance to accept when computing the pointing cursor.

VI. CONCLUSION

We described PointIt, a novel open-source, modular, ROS2-
compliant software toolkit that can be used to imple-
ment Pointing-based User Interfaces. The toolkit includes
application-agnostic functionality that is widely applicable
to human-robot interaction tasks involving pointing gestures
sensed with wearable bracelets. Furthermore, high-level func-
tions are provided to deal with problems involving the selec-
tion of objects when using LED strips for feedback. The code
can be freely downloaded from github and includes ready-to-
run examples.

REFERENCES

[1] G. Butterworth, “Pointing is the royal road to language for babies,”
Pointing: Where Language, Culture, and Cognition Meet, 01 2003.

[2] J. Nagi, A. Giusti, L. M. Gambardella, and G. A. Di Caro, “Human-
swarm interaction using spatial gestures,” in IEEE International Con-
ference on Intelligent Robots and Systems, 2014, pp. 3834–3841.

[3] B. Gromov, G. Abbate, L. Gambardella, and A. Giusti, “Proximity
human-robot interaction using pointing gestures and a wrist-mounted
IMU,” in 2019 IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2019, pp. 8084–8091.

[4] M. Tölgyessy, M. Dekan, F. Duchoň, J. Rodina, P. Hubinský, and
L. Chovanec, “Foundations of Visual Linear Human–Robot Interac-
tion via Pointing Gesture Navigation,” International Journal of Social
Robotics, vol. 9, no. 4, pp. 509–523, 2017.

1At the link https://github.com/Gabry993/pointing-user-interface-hri/tree/
main/docker/pointing-user-interface/code.

https://github.com/Gabry993/pointing-user-interface-hri
https://github.com/Gabry993/pointing-user-interface-hri/tree/main/docker/pointing-user-interface/code
https://github.com/Gabry993/pointing-user-interface-hri/tree/main/docker/pointing-user-interface/code


[5] B. Großmann, M. R. Pedersen, J. Klonovs, D. Herzog, L. Nalpantidis,
and V. Krüger, “Communicating Unknown Objects to Robots through
Pointing Gestures,” in Annual Conference on Advances in Autonomous
Robotic Systems (TAROS). Springer, 2014, pp. 209–220.

[6] S. Pourmehr, V. Monajjemi, J. Wawerla, R. Vaughan, and G. Mori, “A
robust integrated system for selecting and commanding multiple mobile
robots,” Proceedings - IEEE International Conference on Robotics and
Automation, pp. 2874–2879, 2013.

[7] Z. Zivkovic, V. Kliger, R. Kleihorst, A. Danilin, B. Schueler, G. Arturi,
C.-C. Chang, and H. Aghajan, “Toward low latency gesture control using
smart camera network,” 2012 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, vol. 0, pp. 1–8,
06 2008.

[8] J. Sugiyama and J. Miura, “A wearable visuo-inertial interface for hu-
manoid robot control,” in 2013 8th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), 2013, pp. 235–236.

[9] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm, and H. L. Jethani,
“Gesture-based robot control with variable autonomy from the JPL
BioSleeve,” IEEE International Conference on Robotics and Automa-
tion, pp. 1160–1165, 2013.

[10] B. Gromov, L. M. Gambardella, and G. A. Di Caro, “Wearable multi-

modal interface for human multi-robot interaction,” 2016 IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR), pp.
240–245, Oct 2016.

[11] B. Gromov, L. Gambardella, and A. Giusti, “Robot identification and
localization with pointing gestures,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp.
3921–3928.

[12] ——, “Guiding quadrotor landing with pointing gestures,” in 12th
International Workshop on Human Friendly Robotics. Springer, Oct
2019.

[13] B. Gromov, J. Guzzi, G. Abbate, L. Gambardella, and A. Giusti,
“Video: Pointing gestures for proximity interaction,” in HRI ’19:
2019 ACM/IEEE International Conference on Human-Robot Interaction,
March 11–14, 2019, Daegu, Rep. of Korea, Mar. 2019.

[14] S. Mayer, V. Schwind, R. Schweigert, and N. Henze, “The Effect of
Offset Correction and Cursor on Mid-Air Pointing in Real and Virtual
Environments,” Proc. of the 2018 CHI, 2018.

[15] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly v-
rep): a versatile and scalable robot simulation framework,” in Proc. of
The International Conference on Intelligent Robots and Systems (IROS),
2013.


	Introduction
	Pointing-based interaction
	Pointing Model
	Relative Localization
	Feedback
	Pointing-based User Interface

	Software architecture and implementation
	Pointing Model Node (task-agnostic)
	Relative Localization Node (task-agnostic)
	PUI Node (task-agnostic)
	Object Selection Node (task-specific)
	LED Strip Feedback Node (task-specific)

	Applications
	An interface to select packages on a conveyor belt
	Other Tasks

	Software Release
	Testing Our Software
	Launch Files

	Conclusion
	References

