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Abstract— A complete prototype for multi-modal interaction
between humans and multi-robot systems is described. The
application focus is on search and rescue missions. From the
human-side, speech and arm and hand gestures are combined
to select, localize, and communicate task requests and spatial
information to one or more robots in the field. From the robot
side, LEDs and vocal messages are used to provide feedback
to the human. The robots also employ coordinated autonomy
to implement group behaviors for mixed initiative interaction.
The system has been tested with different robotic platforms
based on a number of different useful interaction patterns.

I. INTRODUCTION

In this work, we envisage search and rescue (SAR) scenar-
ios where human agents and multiple robots are both part of
the rescue team and work “shoulder-to-shoulder”, sharing the
same physical environment and interacting as peers. In these
forthcoming scenarios, the success of a SAR mission will
be greatly affected by the performance of the bidirectional
interaction between humans and robots, assuming that the
robots have a certain degree of autonomy while performing
the assigned tasks.

Based on this view, we design and prototype a wearable
multi-modal interface that enables effective bidirectional
interactions from humans to multi-robot systems and vice
versa. No external infrastructure or hand-held instrumen-
tation is needed as often used in non-SAR research [1].
The interface is functional to set up a mixed initiative
system [2], with a special focus on real-world search and
rescue operations. The multi-robot system is empowered with
autonomous group strategies for providing feedback to the
human and for effectively actuating as a collective system
based on human directives and commands.

More specifically, from the user side, we take advantage of
human natural ability to concurrently use different interaction
modalities and blend them in proportions appropriate for
the information being conveyed, following similar research
approaches [3, 4]. We use deictic arm gestures to convey
information about spatially-related notions, such as indicat-
ing directions, pointing to objects and structures, selecting
humans, robots, or groups of them. Hand gestures are used
to express iconic commands and simple mobility controls.
Finally, speech commands are used to express more complex

notions, as well as to reinforce and confirm the basic notions
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expressed through gestures. Based on this categorization of
modalities, a multi-modal vocabulary and a basic grammar
have been designed, with the goal of maximizing reliable
information transfer and minimizing humans cognitive load
and the time needed for communication acts. To transform
gestures-related spatial information (e.g., directions), into a
common reference frame for the humans and the robots, we
have developed a relative localization system, which is set up
and maintained dynamically on the spot. No GPS is required.

A fundamental component of an effective system for
human-robot interaction is represented by the feedback
provided to the human. Since we consider a multi-robot
scenario, coordination needs to be in place to let the multi-
ple robots providing a coherent aggregate feedback to the
user (in general how to effectively get information from
a group of robots is not a trivial task, e.g., [5]). There-
fore, from the multi-robot side, distributed group strategies
for providing feedback to the human have been developed
based on coordinated movements, lights, sounds, and voice
messages. Moreover, the robots have been empowered with
basic autonomous mechanisms to perform in-group selection,
formation control during group motion, and, more in general,
to respond as a unit to human inputs and commands.

In this work we stress the fact that multiple robots are
expected to be concurrently deployed and locally interact
with humans. Compared to the single robot case, a number
of complicating matters arise in this context, that require
to combine multiple modalities from the human side to
issue requests [6, 7], and set up coordinated group strategies
from the robot side to provide feedback without exhausting
human’s sensory and cognitive capabilities.

In order to perform interaction in a natural and robust
manner, our approach is to rely on the use of off-the-
shelf wearable devices, that locally fuse and decode human
signals (i.e., gestures and speech). Local wireless ad-hoc
networking between the human and the robots takes care of
reliable transmission of the processed inputs. The full setup
of the system and the robots that have been used for the
experiments are shown in Figure 1 and described in detail
in the following sections.

In practice, during interaction, we attempt to make the
robots as passive as possible. This approach is determined
by the need to make interaction robust to different external
conditions, such as high variability of illumination and
background acoustic noise, and leave as much autonomy as
possible to the agents. For the success of SAR missions it
is important that robots use their cameras for primary tasks,
not to keep watching humans to catch possible command
gestures. In this way, we can potentially achieve much



higher robustness and reliability compared to most of the
existing approaches, in which it is the task of the robots
to remotely detect, decode, and classify the multi-modal
signals issued by the human. For instance, this is the typical
approach in popular vision-based human-robot and human-
multirobot interaction [8, 9, 10]. The main drawback of
using vision is that it may easily fail in the challenging
and varying environmental conditions of SAR scenarios.
However, whenever it is the human who controls position
of the camera some of these problems can be circumvented.

The contributions of the work can be summarized as
follows. (i) A fully working human-wearable system for
interaction with multiple robots, based on human-centered
relative localization and robot sensing, and fusion of speech,
arm and hand gestures. (ii) Use of each modality for different
purposes and fusion for their mutual confirmation. (iii) A
set of interaction patterns for: individual and group robot
selection, autonomous group motion towards spatial entities
(direction, objects, locations), human-aided group motion.
(iv) Robot group strategies for mixed-initiative classification
of inconsistent combination of modalities for self-organized
group recruitment during interaction.

II. INTERACTING WITH MULTIPLE ROBOTS:
THE NEED FOR MULTI-MODALITY

The interface that we have developed makes use of mul-
tiple interaction modalities—speech, vision, arm and hand
gestures—to generate commands for the robots. However,
one might wonder if such a multi-modal interface is really
necessary for the SAR applications we are considering, if,
for instance, only basic commands need to be issued to the
robots.

The answer is in the fact that multiple robots are expected
to be concurrently deployed and locally interact with humans
on the field. Compared to the single robot case, a number of
complicating issues arise in this context, that can be robustly
dealt with using the fusion of different modalities.

First, when a human wants to address a specific robot
or group of robots, to express for instance a command like
“Robot XYZ, go to room A and search for survivors”, he/she
needs to either name or point to the robots, or do both actions
(and it is also required that the robot knows where room A
is). However, when a multitude of robots is present in the
scene, it is not reasonable that the human rescuer knows
or keeps in mind the names or IDs of the robots. While a
hand-held interface like a tablet would provide a better way
for robot selection, in SAR domain human agents need their
hands to be free for rescue activities. It becomes apparent
that the multi-robot scenario asks for different interaction
modalities compared to the single robot case, in which
there would be no ambiguity when referring to the robot.
In particular, the desired result can be obtained by fusing
information from pointing gestures and speech. For instance,
the sentence “You, go to room A” associated to pointing to an
individual robot would allow to specifically select that robot
for the task of going to room A, even if the name/ID of
the robot is not explicitly mentioned in the sentence. If it is,

then this would just increase the robustness of the procedure.
Moreover, the two modalities would confirm (or disconfirm)
each other, increasing the overall reliability of the system.
How gestures and speech are used is discussed in the next
section.

The presence of multiple robots also creates additional
problems when a specific spatial notion, such as a direction
has to be conveyed (e.g., “Search there for survivors”,
where “there” is pointed using an arm gesture). In fact,
spatial directions have to be correctly understood by all
the selected robots, accounting for their different poses in
the environment with respect to the human pointing to the
desired direction. This issue is addressed with the relative
localization procedure discussed in Section III-C, that com-
bines arm gestures and vision modalities. Once a common
frame of reference is set, then either gestures or speech, or
both, can be used to express spatially-related notions.

III. WEARABLE MULTI-MODAL INTERFACE

The hardware components of the implemented wearable
system is shown in the left part of Figure 1, which consists
of two Myo Armbands from Thalmic Labs [11] (a), a video
camera paired with a laser pointer (b), a headset (c),
and a single-board computer (ODROID [12]) with network
interfaces running ROS (d).

The two Myo Armbands are used to reconstruct arm
configurations and to provide spatial 3D vectors of pointed
directions, while a single Myo, located on the forearm, is
used to capture the hand gestures. The headset is used to
record human speech commands on the wearable computer
to eventually acquire a textual representation of the command
using speech recognition technology. The video camera
paired with the laser pointer is used to acquire information
about the robots and to implement relative localization—a
fundamental component of our system that allows to repre-
sent arm and hand gestures in a common reference frame
for human and the robots. Finally, the ODROID computer
performs all necessary computations and provides network
connectivity during the interaction.

A. Arm and hand gestures

Arm gestures are issued to represent spatial entities (e.g.,
directions), locations, objects, robots: the arm configuration
defines a 3D spatial vector that can be passed to the robots for
performing the desired spatially-related action (e.g., search
for survivors in the indicated location). However, in order to
do this, first, the arm configuration must be reconstructed,
second, the human and the robots need to set a common
reference frame for representing the 3D vector associated to
the gesture (this second step is discussed in Section III-C).
The first step is performed using the two Myo Armbands,
based on a simplified kinematics model of the human arm:
the upper arm (first link) is connected to the stationary
shoulder with a 3-DOF ball joint and to the forearm (sec-
ond link) with a 1-DOF hinge joint. Therefore, the arm
configuration is fully described with four generalized coor-
dinates. Data from the two Myo Armbands, each attached



Fig. 1.

The components of the wearable system for human-multirobot interaction, and the robots employed for the experiments. (Left) Two Myo Armbands

(a) are used for arm configuration reconstruction and hand gestures recognition. A video camera (b) is used to identify robots, while a laser pointer helps
the human to correctly point to the robots. A wireless headset (c) transmits voice data to the computer (d) for speech recognition. A wearable single-board
ODROID computer (d) processes data from individual modalities, fuses them and sends high-level commands to the robots via wireless ad-hoc networking.
(Right) Robots used for experiments. Three Pioneer P3AT and four Foot-bot robots used in experiments are shown. The Foot-bots use on-board LEDs (f)
to provide feedback during interaction, while Pioneers have been equipped with special LED-rings (f) for the same purpose. Visual markers (e) are used

to obtain ID and pose of the robots.

to the corresponding arm link, are used to acquire these
coordinates. In general, a Myo Armband provides 9-DOF
motion data and the measurements from 8§ electromyography
sensors (EMG). However, the onboard inertial measurement
unit (IMU) also internally filters and fuses the motion data
from its gyroscope, accelerometer and magnetometer into an
accurate absolute 3D orientation anchored to the magnetic
north. Thus, knowing the 3D orientation of each link in the
global reference frame, the constraints imposed by the arm
kinematics and sensors’ positions on the arm, it is possible
to calculate the arm configuration parameters. In particular,
the three parameters of the ball joint are exactly the ones
acquired from the upper arm Myo, while the hinge joint angle
is calculated as a difference between upper and forearm Myo
orientation.

We exploit the built-in capabilities of the Myo Armband
for the hand gestures to locally adapt the motion of individual
and group of robots. In practice, waving the hand right or
left makes the associated robots to turn accordingly, based on
their own direction of motion. Thus, the motion of individual
or groups of robots can be locally adapted or manually
guided.

1) Accuracy of gesture reconstruction: In order to eval-
uate the applicability of the chosen wearable sensors we
have estimated the accuracy of the arm configuration recon-
struction by comparing their measurements with a ground-
truth provided by a commercial vision-based motion capture
system (Optitrack). To do so, retroreflective markers were
co-located with the Myo IMUs. The person performing the
experiments was requested to perform periodic motions by
swinging his forearm roughly in the range of 90°. Both
sets of measurements were processed by the same arm
reconstruction algorithm and the two sets of elbow angle
parameters were acquired (Figure 2). To quantify the error,

the mean and standard deviation values of the signed dif-
ference between two sets were calculated. We observed the
mean error ;4 = —11.3°, while the standard deviation was
o = 2.35°. While the measured errors are not large, they
can be significant for the far away objects or directions. In
this case, additional manual controls can be applied to the
motion of the robots on the way using the hand gestures.
Alternatively, additional information can be supplied through
the speech, such that the robots can match gestures and
speech and compute the right direction. An example of this
way of proceeding is discussed in the next sub-section.

Overall, the Myo Armbands showed reasonable perfor-
mance as compared to the Optitrack-based ground truth and
can be used as a part of the wearable interface.
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Fig. 2. Comparison of Myo- and Optitrack-based arm configuration
reconstruction. To make the comparison more clear, the Myo plot was
aligned by the amount of the mean error (u = —11.3°).

2) Perceptual errors when using deictic gestures: One of
the interesting issues we faced during the initial trials of
the arm reconstruction algorithm is a discrepancy between
human’s perception and the measurements. At first, it may



seem that the pointed object should always lay on the same
line as the axis of human’s arm. However, we identified that
it is almost always not the case. In fact, a significant body
of research in the past 40 years has addressed this issue
of systematic human perceptual error when using deictic
gestures [13, 14, 15]. Using the same experimental setting
as before and the configuration shown in Figure 3, we have
measured the pitch and yaw angular errors as a function of
the distance from the pointed object. Numerical results are
reported in Figure 4. It can be observed that the error in
pitch is systematically larger and also relatively less stable
than that in yaw. Both errors grow with the distance, with the
error in pitch showing a larger rate of increase, and becoming
quite large for relatively large distances. Unfortunately, the
magnitude and direction of these errors largely fluctuate from
person to person, such that it is quite difficult to devise a
general filtering procedure for bringing them to zero. In order
to overcome this issue, we have included a laser pointer to
the system (Figure 1, b), which is used to help the human
to visually correct the way he/she is pointing.
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Fig. 3. Illustration of the systematic errors committed by humans when
using pointing gestures to refer to spatial entities. Errors are both in pitch
and yaw, and usually have different relative magnitudes.
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Fig. 4. Experimental measure of the systematic pointing errors committed

by humans using deictic gestures. Errors are calculated for both pitch and
yaw as a measure of the distance from the pointed object.

B. Speech sentences and multi-modal fusion

While the deictic gestures are very efficient to describe
directions, locations and spatial entities, they are not suf-

ficient to communicate semantically complex notions and
requests. For instance, the requests may include information
about the properties of the objects, like color or size; spatial
relations, e.g. “on the left”, “behind”; or even temporal
notions. Attempt to use gestures alone would require quite
a clumsy gesture vocabulary, or, indeed, the use of a spe-
cialized sign language. It is apparent that the requirement
to learn such a language would be impractical during a
SAR mission. Also the decoding of a full sentence would
be quite hard to perform in a robust way. Conversely, these
types of complex sentences can be naturally expressed using
verbal communication. Thus, we use speech to both express
notions that could hardly be expressed using gestures and
to reinforce and support the gestures themselves. That is,
speech is used for modality fusion: a sentence may refer to
other modalities using direction and/or selection semantics
(e.g. “there”, “you”). For instance, while using a gesture
a direction is pointed to, a sentence such as “move to the
indicated direction” uttered at the same time can support the
gesture and allow to express a more complex request.

The audio speech data is captured by a headset (Figure 1,
¢) and stored on the ODROID computer (Figure 1, d). In turn,
in the current implementation, the embedded computer sends
the data to the cloud-based Microsoft Speech Recognition
services and obtains the textual representation of a command.
Once the text is received back, it is matched against a list
of predefined command templates and the associated entities
are extracted. At the moment, the command templates are
limited to basic operations that could be performed during
a SAR operation, but can be expanded with more sophisti-
cated commands or can be integrated with natural language
processing engines.

Currently the system can process information regarding
robot’s ID, distance to be traveled, actions to be performed,
directions or locations, position, color of objects, time allo-
cated to perform tasks. For instance, the human user can
utter a sentence like “Robot A, you, and you, move to
this direction and search for red bins for 10 minutes” and
accompany it with the appropriate gestures to first select
the robots and then point to the desired direction. The
uttered sentence is transformed into text using the Microsoft
services, then all the relevant action elements are extracted,
and finally the individual commands are sent in clear to the
selected robots using local wireless networking.

To fuse the two modalities the timestamped streams of
arm configuration messages and of the recognized speech
commands are stored in a local cache. The timestamps of
the beginning and the end of the utterance are preserved
from the original audio stream and then used to extract
the corresponding slice of continuous arm configuration
data, which, in turn, is filtered and utilized to estimate
the pointed direction or location with respect to the user.
The fusion is triggered automatically based on the type of
speech command, i.e. when the sentence contains spatial
information.

Multi-modal information fusion is also used to detect
inconsistencies and provide local feedback: whenever spatial



information is contained in the decoded sentence, the elbow
angle (hinge joint) and the shoulder orientation (ball joint)
are matched against predefined margins to check whether
the arm configuration is compatible with the provisioning
of spatial information or not. For instance, if the decoded
speech sentence “Go to that door” is not accompanied by a
pointing gesture, an error is raised up and communicated to
the human through a vibration of the Myo Armbands and by
vocal message to the headset.

C. Vision-based robot identification and relative localization

In order to interact with a specific robot or a subset of
robots from a group, first they have to be identified and
selected. Then, if the request or command from the human
involves a spatial entity, a relative localization has to be
performed which essentially sets a common reference frame
between the human and the robots.

Our system can perform relative localization on the spot
by combining the reconstructed arm configuration and a
vision-based recognition of robot poses. The human starts
the process by pointing to the desired robot to be identified
and selected. Let’s say this is robot /. The camera attached
to the Myo Armband on the forearm (Figure 1, b) is used
to detect the multi-faceted visual marker attached to the
robot (Figure 1, e), in order to obtain its ID and estimate
the pose with respect to the camera frame'. As noted in
Section III-A.2, the laser pointer paired with the camera
allows the human to align the arm in the direction to the
robot. Using the reconstructed arm configuration, the full
6-DOF pose of robot / is computed with respect to the
human footprint. This information is then stored both on
the wearable system (Figure 1d), and transferred to the
available robots via local ad-hoc wireless networking. Each
time the process is repeated for another robot i, its relative
pose is also computed in human’s frame and therefore can
be also bound to robot / coordinate frame and vice versa.
Exploiting coordinates’ transformation properties, a tree of
coordinate systems rooted in the human reference frame
is created. The tree can also be dynamically maintained
by the robots performing on-board dead-reckoning and/or
using additional localization measures. Robots can share
their own coordinate updates with each other using ad-hoc
networking, dynamically maintaining the systems coordinate
transformation tree. Updates can also be performed by the
human repeating the above localization procedure.

The entire process is depicted in Figure 5, where the
coordinate transformation trees associated with individual
robots are represented by the blue directed arcs, while the
red arcs constitute the transformation tree acquired with the
help of the camera.

IV. MULTI-ROBOT SIDE:
MULTI-MODAL COORDINATED FEEDBACK
As it has been discussed in Section II, the presence of

multiple robots brings additional challenges to the design

'In the current implementation we use the AR Track Alvar ROS-package
with bundled cubic markers.
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Fig. 5. Relative localization scheme. Checker boxes depict visual markers.
Colored dashed arcs constitute the coordinates transformation trees (TF-
trees) with the arrows pointing to corresponding parent frames. Blue arcs
are the robots’ individual TF-trees rooted in their odometry frames. Red
arcs are the transformations acquired during the localization process and
rooted in the human frame. The long-dashed curves are the robots’ traveled
paths.

of interaction modalities and requires special care for the
feedback provided by the robots.

At the current stage of development, we are focusing on
the fact that the human needs to get some feedback after
selecting one or more robots and issuing a request. The
feedback should clarify that the robots have been correctly
selected and that the request is going to be correctly executed.
Although the robots are almost passive during the interaction,
things can still go wrong, and the human needs to promptly
intervene if this is the case.

When multiple robots are in the scene, feedback needs to
be provided in a coordinated way, otherwise the resulting
effect could be extremely confusing. For instance, if all
selected robots would individually reply to human’s input by
a synthetic voice message (e.g., “Robot XYZ1 acknowledges
the request for going searching in room B”), the net effect
would be an overlapping stream of voices. If 10 robots have
been selected, this would just result in big noise for the
human. Therefore, we have developed coordinated multi-
robot strategies for providing informative feedback to the
human.

In the current implementation, robots provide an audio-
visual feedback which is both fully informative and accept-
able in terms of sensory and cognitive load to the human.
To give a visual feedback, the robots are equipped with
controllable RGB LED-rings. Once a robot or a group of
robots are selected, they set their LEDs to a predefined
color. The confirmation messages are sent via local ad-hoc
network to the human wearable PC, which aggregates the
acknowledgments and generates a synthetic voice feedback.
Similarly, after accepting a command, the robots trigger an-
imated color patterns, while the voice feedback additionally
confirms the action to be performed.

V. THE SYSTEM AT WORK: INTERACTION PATTERNS

Based on the technologies described in the previous
sections, a number of interaction patterns between human
agents and multi-robot systems have been designed with the



goal of addressing typical useful situations in SAR scenario?.

a) Specific selection and localization of robots: To start
interacting with a robot or a group of robots, the user has
to point to the visual marker on one of them and use the
addressing voice command “You”. The laser pointer mounted
on the forearm helps to correctly point to the visual marker
and acquire robot’s ID. In this way, a single robot is selected.
To visually confirm the selection, the robot turns on its
on-board LEDs (and, if the voice option is On, a vocal
confirmation is also provided). In background, the selection
process is accompanied by the relative localization process,
that allows to put the robots into a common reference
frame with the user. To localize additional robots, the voice
command ““Start localization” can be issued. Following it, the
user can point to any additional robot and say “Localize” to
confirm the selection. Once the process is done, the robots’
local coordinate transformation trees are be joined together
via the root tree node at human’s current position. Moreover,

b) Generic group robot selection: When it is not im-
portant which particular robots to use for a task, a group of
robots can be conveniently selected with a seeded selection
approach, that realizes a form of mixed initiative interaction,
relying on robots’ decision autonomy. In fact, the user has
to point to one of the robots, the seed, and say “You and
another N, where N can be any number of robots. The
seed, in turn, communicates (via ad hoc networking) with
other localized robots and recruits the /N required ones based
on some appropriate criteria (e.g., closeness, battery status,
current engagement, skills).

c) Selecting a specific sub-set of robots: To select a
number of specific robots from the pool, a cherry-picking
process can be performed by quickly pointing and addressing
the robots with the voice commands “You”, “you”, ...“and
you”. While doing this, as before, in background the rel-
ative localization process is active to create the coordinate
transformation tree.

d) Commanding for useful tasks: Once selection is
done, the selected robots can be controlled with various
commands including spatial components, specified through
arm gestures. At the moment the system allows to express
requests like “Go there”, “Move N meters in this direction”,
“Search for survivors for 20 minutes”, “Go to the red bin”,
and so on.

e) Discrete and continuous manual control: Due to
accumulation of pointing and localization errors, pointed
locations can be sometimes imprecise. To intervene and
adjust final destination of a robot or a group we utilize
manual control based on discrete hand- or continuous arm-
gestures. To switch to manual control, the user hold the arm
along the body, with the elbow bent roughly at 90°. The
discrete hand gestures provided by Myo, i.e. Wave In, Wave

2A subset of these patterns is shown in an annotated com-
panion video accessible at the https://www.dropbox.com/s/
lyimezfdglrsdiO/wearable—hri.mp4?d1=0. The video was pre-
viously put on display at the Fielded Multi-robot Systems Operating on
Land, Sea, and Air workshop (ICRA ’16). In the implementation shown in
the video, the robots are localized by means of an optical tracker.

Out, Fist, Fingers Spread, are directly mapped to the rurn
left, turn right, accelerate, decelerate motion commands of
the robot. The continuous control is mimicking a joystick
and performed by holding the fist while displacing the hand
from initial point in any direction on the virtual plain. In
this case, moving the fist forward sends positive forward
velocity commands to the robot, while moving the fist on
the sides makes the robot turning to corresponding direction.
The velocities commanded to the robot are proportional to
the displacement. Implemented manual control is exposed
to ROS with sensor_msgs/Joy interface, where discrete
commands are mapped to buttons and continuous to the axes,
therefore virtually any robot supporting this interface can be
controlled with our virtual joystick.
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