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Abstract— We propose a novel approach to establish the
relative pose of a mobile robot with respect to an operator that
wants to interact with it; we focus on scenarios in which the
robot is in the same environment as the operator, and is visible
to them. The approach is based on comparing the trajectory of
the robot, which is known in the robot’s odometry frame, to the
motion of the arm of the operator, who, for a short time, keeps
pointing at the robot they want to interact with. In multi-robot
scenarios, the same approach can be used to simultaneously
identify which robot the operator wants to interact with. The
main advantage over alternatives is that our system only relies
on the robot’s odometry, on a wearable inertial measurement
unit (IMU), and, crucially, on the operator’s own perception.
We experimentally show the feasibility of our approach using
real-world robots.

VIDEOS, DATASETS AND CODE

Video, datasets and code to reproduce our results are
available at: http://people.idsia.ch/˜gromov/
motion-relloc

I. INTRODUCTION

Pointing gestures, also known as deictic gestures, are a
simple, intuitive and frequently used device when humans in
close proximity want to communicate directions, positions
or objects to each other; pointing gestures can also be an
intuitive way to interact with mobile robots that share space
with an operator, e.g. indicating a direction for a robot to
explore, an object to inspect, a spot for a drone to land. One
practical implementation strategy to realize this vision relies
on a wearable device on the operator (such as a smartwatch)
that is networked with the robot and includes an IMU to
sense the orientation of the arm: then, one can robustly
reconstruct a 3D ray in the operator’s own local reference
frame, on which the pointed location or object lies. In order
to use it for robot interaction, one needs to express such ray
in terms of the robot’s own reference frame. This implies that
the robot and the operator should be localized with respect
to each other, i.e. their relative pose should be known.

The main contribution of this paper is a novel, simple
and robust approach to estimate the relative 3D pose of the
robot with respect to the operator, which mainly relies on a
wearable IMU and on one powerful sensor that comes for
free: the operator’s own perception.

In the first phase, the operator points at the robot they want
to interact with, in order to “select” it. The act of pointing at
something (or an explicit input such as a button press or voice
command) triggers the beginning of the second phase, which
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is marked by a clear feedback (e.g. the operator’s bracelet
vibrates or emits a sound, the robot lights up with a specific
color): in this phase, the robot follows some trajectory, while
the operator moves his arm in order to keep pointing at
it. After a few seconds, the system is able to estimate the
relative localization between the operator and the robot by
comparing the operator’s arm movements (known in the
operator’s reference frame) and the corresponding motion of
the robot (estimated in the robot’s odometry frame). Another
feedback marks the end of the second phase.

This paper focuses on the process described above. Once
the relative localization is established, the operator’s position
(and the ray corresponding to any further pointing gesture) is
known in the robot’s frame. Then, the interaction continues
in a scenario-dependent way. For example, the robot may
turn or move towards the operator in order to receive further
commands; moreover, any further pointing actions by the
operator can represent a spatial input to the robot (e.g. a
path to be followed, a direction to be explored, or a goal to
reach). We previously demonstrated [1] that pointing gestures
can be used, even by untrained operators, to intuitively and
efficiently guide a drone to land on a precise spot; in that
work, however, relative localization was relying on the strong
assumption that the operator initiated the interaction while
standing exactly behind the drone, and also required that
the drone was flying at a known height with respect to the
operator.

The approach we propose here, instead, does not rely
on any such assumption, but still allows one to optionally
incorporate known constraints, for example: 1) in most cases
it can be safely assumed that the z-axis of the operator’s
and robot’s reference frames are parallel, because IMUs can
accurately determine the direction of gravity; 2) if both
the operator and the robot are equipped with a reliable
magnetometer, the relative headings may be known at least
with some precision; 3) if we assume a flat floor and a ground
robot (or a flying robot with an accurate height sensor), the
vertical displacement between the two frames can be known
in advance. In our experiments, we only rely on the first of
these three constraints.

Our approach also handles multi-robot systems: in this
context, one additional problem is to determine which robot
the user wants to interact with. In case multiple robots are in
range, phase two is triggered for all robots simultaneously;
crucially, each robot now follows a trajectory with a different
shape; the system can then simultaneously determine which
robot the operator was pointing to, and its relative pose with
respect to the operator.

We first discuss related work (Section II), then formalize
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Fig. 1: Left, Phase 1: the operator points at the robot they want to interact with; an explicit (button press) or implicit
(pointing gesture detection) event triggers the beginning of the interaction. Center, Phase 2: all nearby robots start moving
along different paths, and the operator keeps pointing at the target robot; the system acquires a set of pairs each composed
by: a pointing ray r in the operator’s frame of reference {H}; a point P in the robot’s fixed odometry frame {R}. Right:
after a few seconds the system has identified the target robot and reconstructed the transformation T ∗ linking {H} and {R}:
pointing rays can be known in the robot’s frame, and the interaction can continue in an application-dependent way. This
paper focuses on phase 2.
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Fig. 2: Implementation of the proposed method in real-world
experiment.

the problem and our solution (Sections III & IV); in Sec-
tion V we describe our experimental setup in detail and report
extensive quantitative and qualitative results (Section VI) that
demonstrate the effectiveness of the approach on different
types of robots and under different conditions. A discussion
on future research topics concludes the paper.

II. RELATED WORK

Our work consider two major topics in robotics: local-
ization and human-robot interaction (HRI) using pointing
gestures.

A. Localization

Localization is an essential part of any robotic system:
it is used for relating a robot pose to a working environ-
ment, objects in it or other agents (including humans). The
localization methods can be grouped into direct and indirect
methods.

1) Direct methods: Direct methods assume that a position
of one agent is estimated directly with respect to another
agent, using, e.g., triangulation or multilateration of a ra-
dio [2], optical, or sound signal [3].

These also include vision-based methods, such as localiz-
ing using passive [4, 5] and active [6, 7] markers, known
geometry or other visual features of the agent [8]. For
example, when it is a human to be localized, features like
natural skin color [9], face [10], or even legs [11] can be
used.

2) Indirect methods: These methods assume the two
agents are localized with respect to a common reference
frame and thus a coordinate transformation can also be
recovered between the agents.

A common reference can be established using geographi-
cal coordinates using global positioning system (GPS) [12],
or using techniques that are suitable for indoor use, such
as optical motion capture systems like Optitrack, or ultra-
wideband (UWB) localization systems [2, 13].

An alternative approach is a co-localization of the
agents [14] that individually perform simultaneous localiza-
tion and mapping (SLAM) of the same environment. By
finding correspondences on the maps it is possible to estimate
a coordinate transformations between the agents.

The method we propose in this work falls into the category
of direct methods, however none of the approaches in that
category use inertial sensors for localization. In the indirect
methods inertial sensors are used in conjunction with vision
sensors to find better estimates of the egomotion of the
system for the SLAM task [15].

B. Pointing gestures

Pointing gestures are an innate [16] and effective device
that humans use all the time. Thus, they are of a particular
interest to robotics community: they allow the human user to
intuitively communicate locations and other spatial notions
to the robots. The typical tasks to be solved in robotics
with pointing gestures are: pick-and-place [17], object and
area labeling [18], teaching by demonstration [19], point-to-
goal [20] and assessment of the joint attention [21].

To the best of our knowledge the proposed method is the
first to use pointing gestures for localization.



C. BB-8

The commercial toy robot BB-8 by Sphero [22] uses a
wearable bracelet-like interface equipped with an IMU to
provide velocity control: the user can perform a push-like
gesture with their arm along a given direction, and the robot
moves correspondingly. This requires to first calibrate the
relative headings of the wearable bracelet and the robot, i.e.
to fix the relative orientation of the human and robot frame.
When the user initiates this calibration procedure, an LED
lights up on a LED ring on the robot circumference: at this
point, the user can control which LED is illuminated on
the ring by twisting their wrist. Once the user aligns the
illuminated LED with their direction, they press a button
to complete the calibration procedure. Now, the heading of
the user arm as measured by the IMU can be converted in
the robot’s frame. This approach is similar to ours in that it
exploits the user’s perception in order to constrain the robot’s
frame with respect to the operator’s. On the other hand, our
approach also determines the relative displacement of the
two frames in addition to the relative heading, which enables
us to provide a rich position-control interface that would
otherwise be impossible (see Section VI-B); moreover, our
approach relies on the robot’s own motion ability, and can be
adopted even when the robot’s orientation can not be clearly
recognized (e.g. a drone high in the sky).

III. MODEL

Let us define a reference frame of the operator {H}, a
reference frame of the robot {R}, and the concept of pointing
ray r.

The reference frame {H} is located at the operator feet
with the x-axis pointing forward, y-axis to the left, and z-
axis pointing up. The reference frame {R} is an arbitrary
fixed reference frame in which the robot reports its position;
in practice, it is useful to assume it to be the robot odometry
frame, however our model does not require it.

The pointing ray r is a 3D half-line on which the point that
the human intends to indicate lies. Estimating r from sensing
data is a challenging task that involves human perception
and cognition processes, and depends on each individual.
This topic has been extensively studied in psychology re-
search [23, 24] which suggests two main models: 1) the
shoulder-wrist model assumes that the point the human wants
to indicate lies along the 3D line defined by the long axis of
the pointing arm; 2) the head-finger model assumes that the
point lies along the line connecting the dominant eye and
the tip of the pointing finger. The first model relies solely on
proprioceptive feedback and emerges when visual feedback
is not available, e.g. user is blindfolded or operates in virtual
reality environment without appropriate visual cues. The
second model, in contrast, corresponds to normal conditions.
The choice of a particular model in robotic applications
mainly depends on the technology available for sensing the
user’s posture and on the task.

Our goal is to estimate the pose (position and orientation)
of the robot’s frame {R} in the reference frame of the
operator {H}: the operator points at the moving robot and

keeps following it with a pointing gesture for a short period
of time τ ; we collect the pointing rays r{H}

i in the reference
frame {H} and corresponding robot’s positions P {R}

i in
the frame {R}, after which a coordinate transformation T ∗

between the two frames is estimated using an optimization
procedure.

A. Formal definition

Given a finite set R of N pointing rays r{H}
i , defined in

the frame of reference of the operator {H}:

R = {r{H}
1 , . . . , r{H}

N },

for each r{H}
i we consider the corresponding robot position

P {R}
i defined in the frame of reference of the robot {R},

and thus define a set of pairs C:

C = {
(
r{H}
1 , P {R}

1

)
, . . . ,

(
r{H}
N , P {R}

N

)
},

We expect that the points P {R}
i lay close to their corre-

sponding rays r{H}
i .

For a given estimate T of the transformation, we can
convert the robot positions P {R}

i defined in the robot frame
into the operator frame, i.e. P {H}

i = TP {R}
i . Using these

points we define a new ray q{H}
i that shares the origin with

the ray r{H}
i , but passes through the point P {H}

i .
Now, we can define the error function θ for a set of pairs

C:

θ (T, C) = 1

N

N∑
i=1

∠(r{H}
i , q{H}

i ) (1)

where ∠(· · · ) ∈ [0;π] represents the unsigned angle between
the directions of two rays. The error function θ (T, C) is
therefore 0 iff all points lie on the respective ray, and > 0
otherwise.

We search for the coordinate frame transformation T ∗

between the operator frame {H} and the robot frame {R}
that minimizes the error function, i.e. that minimizes the
average unsigned angle between all the pairs of vectors r{H}

i

and q{H}
i .

T ∗ = argmin
T

θ(T, C) (2)

The residual error θ∗ = min θ(T ∗, C) indicates how well
the transformed robot positions fit the corresponding rays.

B. Interaction length

The number of data points N in this model is defined by
the interaction time τ (in seconds) and the data acquisition
frequency f (in Hz), such that N = τ · f . We assume all
the sensors of the system are synchronized to this common
frequency. In Section VI, we test the influence of τ on the
resulting error.



C. Pointing model

In our system, the pointing rays r in coordinate frame
{H} are found using orientation readings from wearable
IMUs. They can be defined in various ways depending on
the chosen human perception (pointing) model. The most
popular models in robotics are [25, 26, 9, 27]: head-finger,
upper arm, and forearm. These models define where does
the ray r originate from and which other point does it go
through. A pointing ray of the head-finger model originates
at a centroid of the head and passes a point at the fingertip;
respectively, the upper arm pointing model defines a ray with
the origin at the shoulder and passing through a point at the
elbow; the forearm model defines a ray with the origin at
the elbow and passing via the wrist joint. In this work, we
employ the head-finger model.

D. Constraints on the transformation

We express the transformation T ∗ as a composition of
translation and rotation, where the translation is defined as
a three-dimensional vector t = [tx, ty, tz] and the rotation
as γ = [γx, γy, γz]. We further simplify the model by
ignoring rotations around x- (roll) and y-axis (pitch). This
is a fair assumption for our application since the z-axes of
the operator and the robot coincide and correspond to the
opposite direction of the gravity vector estimated by their
IMUs.

The optimization problem is now reduced to that of finding
a four-dimensional vector:

ρ = [tx, ty, tz, γz] (3)

E. Application to multiple robots

In case multiple robots are in the scene, one needs
to simultaneously reconstruct the pose transformation and
identify which robot the operator is pointing at. If all robots
follow a different trajectory and we assume the user is
pointing at one of them, this is easily implemented by solving
the minimization problem separately for each robot, and then
identifying the target robot as the one which yields the lowest
residual error. A schematic representation of this process is
presented in Figure 1.

F. Relation with extrinsic camera calibration and the
perspective-n-points (PnP) problem

The problem of reconstructing the relative pose of the
robot with respect to the user resembles the two well-
known problems in computer vision that are closely related
to each other: reconstructing the pose of an intrinsically-
calibrated [28] camera which observes a known calibration
pattern (extrinsic camera calibration), and; reconstructing the
pose of a known object [29] when observing the image
coordinates of some of its points (perspective-n-points). In
both cases, image points can be backprojected as viewing
rays in the camera’s reference frame (analogous to {H}); the
3D points are known in the object frame (analogous to {R}),
and the goal is to reconstruct the transformation between the
two frames.

In this analogy, the intrinsic calibration of the camera
relates the measurements (i.e. the image points) to the
viewing rays in the camera’s reference frame; similarly, our
pointing model relates the measurements of our sensors to
pointing rays in frame {H}. In computer vision, the 3D
points are known in the frame of the object; in our model,
instead, the 3D points are built from the robot’s motion, in
frame {R}. When solving these problems in computer vision,
one often minimizes the average reprojection error over all
points, which is analogous to the way our error function is
defined.

IV. IMPLEMENTATION

Similar to our previous work [1], we equipped the operator
with a pair of wearable Myo Armband sensors that include
the 9-axis inertial measurement units (IMUs). The sensors
are placed on the upper arm and the forearm; the data is
streamed to a host PC via Bluetooth LE link with the 50 Hz
rate, where it is resampled at 30 Hz rate and synchronized
with other data. Internally, each sensor fuses the data from
its accelerometer, gyroscope and magnetometer into a robust
orientation estimate that is provided to the user as a quater-
nion.

Using predefined parameters of the operator body, i.e. the
shoulder and eyes height above the ground and the length
of the arm (shoulder to index fingertip), we calculate the
static positions of the head and the shoulder with respect to
the operator coordinate frame {H} placed at their feet. We
also predefine relative transformations between the joints of
human arm to later determine dynamic position of the index
finger.

We perform a model-constrained arm pose reconstruction
using just a single sensor on the forearm and thus require
the user to point with a straight arm. The data from both
sensors serve as an input to the pointing detector [30] that
is used for triggering the start of the robot motion; the exact
method used for triggering depends on the application and
is out of the scope of the present paper.

The static and dynamic points described above allow us to
define pointing rays r for various human perception models,
described in Section III-C. For this work we chose the head-
finger model.

We assume that the robot and the operator are networked
and the robot is able to track its own position with a
reasonable accuracy in some fixed reference frame {R}, e.g.
its odometry frame.

The proposed system requires no fixed infrastructure and
can be used both indoors and outdoors.

First, we acquire 3D-orientation data from a pair of inertial
sensors, and calculate arm poses and their respective pointing
rays r{H}

i in the frame of reference of the operator. At the
same time, we acquire robot positions P {R}

i in its reference
frame and synchronize them with corresponding pointing
rays in order to build the set C = {

(
r{H}
i , P {R}

i

)
}. In

practice, the set is implemented as a buffer of size N . It is
starting to fill in when the interaction sequence is triggered



by the user, otherwise the data is dropped. Once the buffer
is full we pass the set to the optimization procedure.

The nonlinear optimization problem (Eq. 2) is solved
with the quasi-Newton method of Broyden, Fletcher,
Goldfarb, and Shanno [31] as implemented in the
optimize.minimize function from the SciPy li-
brary [32], with default parameters. As the initial guess,
we use ρ0 = [0, 0, 0, 0], i.e., we consider the robot frame
coinciding with the user frame.

We base our implementation on the Robot Operating
System (ROS) [33] framework, where we synchronize and
process all streams of data.

The transformation retrieved with the optimization proce-
dure is then published to the ROS tf -tree.

V. EXPERIMENTAL SETUP

We implemented our system in an indoor flying arena of
approximately 7× 7 m size. The arena is equipped with the
Optitrack motion capture (MOCAP) system, that is capable
of tracking objects in 3D space with up to 200 Hz rate.

As the target robotic platform we used a commercial
drone Parrot Bebop 2. We equipped it and the operator with
markers to acquire the ground truth for our experiments.

A. Data collection

We acquired data in several sessions. In each session, the
drone repeatedly followed a predetermined closed trajectory
without interruption; in each session, the user was standing
at a predefined position and was instructed to continuously
point at the drone with a straight arm. To start the session,
the operator had to point at the drone and press and hold
a button on a joypad. We recorded five such sessions, three
of which were performed on a triangular trajectory and two
on a circular one. On average each full session lasted 50 s.
A single loop of the circular and triangular trajectories took
approximately 12 s and 7 s, respectively.

Each session resulted in: 1) a set C of pointing rays r{H}
i

obtained from IMU data and corresponding robot positions
P {R}
i recorded by the tracking system; 2) the set of ground

truth operator positions U = {U gt
1 , . . . , U

gt
N} recorded by the

tracking system. Samples of a single loop of the trajectories,
and the operator positions in each session are depicted in
Figure 3.

We then analyze this data to evaluate the performance of
the algorithm under different conditions and settings.

B. Odometry error model

Our approach relies on the robot’s odometry to estimate
the trajectory in the robot’s frame. For our experiments, we
acquired the ground truth trajectory P gt

1 , · · · , P
gt
N using the

motion tracking system, then we perturbed it in order to
simulate the trajectory that the robot’s odometry would yield
in different operating conditions.

In particular, we consider a simple synthetic model for
the errors of a visual odometry (VO) pipeline which we
pessimistically assume to never perform relocalization: the
estimated trajectory therefore accumulates errors and drifts
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Fig. 3: Experimental setup for data collection (ground truth):
two trajectories (circular and triangular) are represented by
thin orange and blue lines, the operator positions for each of
the five sessions are represented by the circular and triangular
markers. Labels identify the respective sessions in Figure 5.

away from the real one. This is implemented as follows. We
consider the sequence of ground truth positions sampled at
30 Hz; we define P vo

1 = 0 (i.e. the origin of the robot’s
odometry frame), then iteratively compute P vo

i = P vo
i−1 +

(P gt
i − P gt

i−1) + ε, with ε ∼ N3(0, diag(σ, σ, σ)). We test
four scenarios: σ = {0, 0.001, 0.005, 0.015}, corresponding
respectively to ideal, good, bad, and terrible odometry per-
formance.

The effects of such transformation on a sample trajectory
are visualized in Figure 4; quantitative data averaged on
a large amount of simulations are reported in Table I. In
this table, for example, we observe that, on average over all
experiments, a 10-second trajectory is 5.19 m long, and has
an extent (farthest distance between any two points) of 1.38
m. The good (σ = 0.001) and bad (σ = 0.005) VO models
yield a maximum deviation from the ground truth trajectory
of 0.03 and 0.17 m respectively, which correspond to 2%
and 12% of the trajectory extent.

VI. RESULTS

A. Quantitative evaluation

1) Experiment description: Using the data acquired as
described above, we run the following experiments.

One experiment is defined by three parameters: session,
trajectory duration τ , VO noise σ. To run one experiment,
we extract a random segment of the trajectory from the
defined session, with the required duration τ ; then, we
corrupt the measured robot trajectory using the VO error
model described in Section V-B with the specified VO noise
value σ. This yields a set of ray-point pairs, whose cardinality
depends on the duration of the trajectory. The nonlinear



Trajectory length [m] Trajectory extent [m] Mean VO error [m] for σ = Max VO error [m] for σ =

0.0 0.001 0.005 0.015 0.0 0.001 0.005 0.015
Trajectory duration [s]

0.5 0.25 0.24 0.0 0.00 0.02 0.07 0.0 0.01 0.04 0.11
1.0 0.51 0.48 0.0 0.01 0.03 0.08 0.0 0.01 0.05 0.14
2.0 1.03 0.86 0.0 0.01 0.04 0.11 0.0 0.01 0.07 0.20
3.0 1.54 1.11 0.0 0.01 0.05 0.15 0.0 0.02 0.09 0.26
5.0 2.58 1.33 0.0 0.01 0.06 0.19 0.0 0.02 0.11 0.33
10.0 5.19 1.38 0.0 0.02 0.10 0.29 0.0 0.03 0.17 0.51
20.0 10.36 1.41 0.0 0.02 0.12 0.37 0.0 0.05 0.23 0.70

TABLE I: Trajectory estimation errors due to the visual odometry model. For each trajectory duration (row), we report
the average over all experiments of the following measures (all in meters): the ground truth trajectory length and
extent (i.e. the distance between its two farthest points); the mean and maximum error due to visual odometry for
σ = {0, 0.001, 0.005, 0.015}.
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Fig. 4: Simulated odometry estimates of the drone trajecto-
ries: (blue/solid) perfect, i.e. ground truth; (orange/dashed)
good; (green/dot-dashed) bad, (red/dotted) terrible.

minimization procedure (Eq. 2) is then executed using such
input data, which returns an estimated transform T ∗.

2) Error metric: For a given experiment, we are interested
in measuring the error of the estimated transform T ∗ with
respect to the true transform between the human and robot
frames.

In order to quantify this error, we consider the location of
the top of the operator’s head. In the human frame, this point
has coordinates (0, 0, 1.83) (tailored to the user), since the
human frame {H} is defined to lie at the feet of the operator.
In the robot frame {R}, the ground truth coordinates of the
same point are measured for each session by means of the
motion tracking system, since the operator wears a hat with
a marker. If the reconstructed transformation T ∗ was exact,
such ground truth point would be transformed to (0, 0, 1.83)
when expressed in the human frame. In the following, we
report as an error metric the horizontal component of the
distance between the transformed position of the top of the
head, and the point (0, 0, 1.83) in the human frame.

This error metric has an intuitive interpretation: in fact, it
corresponds to the distance from the true operator’s position
that a robot would reach if, after relative localization, it was
tasked to move to the estimated operator position (assuming
perfect odometry during such path).

Note that this metric accounts for both the translational
and rotational component of the error in the reconstructed
transformation.

3) Accuracy results: In Figure 5 we report, for each value
of σ (rows) and each scenario (columns), the value of the
error metric as a function of the duration of the trajectory τ
(x-axis of the plot). For each setting of the three parameters,
we repeat the experiment 20 times (replicas), each with a
different random sampling of the trajectory from the chosen
session, and a random realization of the VO noise. We report
the distribution of the error metric in the 20 replicas as a
boxplot. The figure therefore summarizes the results of 3×
5× 7× 20 = 2100 experiments. We observe the following.

Estimation error decreases with time; this is expected as
the number of correspondences increases, which limits the
impact of measurement noise and temporary inconsistencies
in pointing by the operator; most importantly, longer trajec-
tories have a larger extent, meaning that the localization can
become more accurate as the cone of pointing rays spans a
larger angle.

Estimation error heavily depends on the session: in the
triangle-s1 session, where the operator is very close (about
1.2 m, see Figure 3) to the robot, we obtain very accurate
estimates (error < 0.25 m) for trajectory durations as short
as 1 second, and 0.5 seconds already yield acceptable results.
Longer robot–operator distances still yield median errors
close to 0.25 m but only after 3 or 5 seconds, depending
on the scenario.

The approach is very robust to odometry errors: the error
metric is only marginally impacted by a VO noise σ = 0.005,
which yields significant deviations from the true trajectory
(Table I). A large VO noise value (σ = 0.015) still yields
a median error below 0.5 meters on all sessions for a 5-
second long trajectory. Interestingly, in triangle sessions,
which have a smaller extent than circle sessions, increasing
the trajectory duration over 5 seconds is detrimental to
accuracy, as accumulating odometry errors negatively affect



Fig. 5: We report one row for each value of the VO noise σ ∈ {0.001, 0.005, 0.015}, and one column for each session.
Each plot reports the distribution (box) of the error metric (y axis) as a function of the duration of the trajectory (x axis)
over 20 replicas. Results for ideal odometry (σ = 0) are indistinguishable from for plots with σ = 0.001 (first row) and are
therefore not reported.

estimation results.

Fig. 6: Success rate in identifying the correct robot among
two (see text). 100 replicas per bar. Error bars represent 90%
confidence interval.

4) Robot identification results: In Figure 6 we report the
success rate in identifying the pointed-to robot among two.
For each experiment, we sample a segment of trajectory
from one of the five sessions at random (starget), and the
corresponding pointing rays; we also sample an equal-length
trajectory segment from a different session (sother), chosen
at random among those with a different shape than starget
(circle if starget is triangle, or the other way around), but
we ignore the corresponding rays. We now have one set
of rays and two sets of points, which are both corrupted
with VO error with a given σ ∈ {0.001, 0.005, 0.015}. The

two set of points represent the measured trajectory by two
robots: the one pointed to by the operator, and a different
one that the operator was ignoring, and that was following
a differently-shaped trajectory. We solve the minimization
problem associating the one set of rays with each of the two
sets of points, and measure the fraction of experiments in
which the residual error θ∗ is lower for the target trajectory
than for the other trajectory. This corresponds to the fraction
of experiments for which our approach would have identified
the correct robot (the baseline being 50%).

We observe that 5 s are sufficient to discriminate the
correct robot in the largest majority of cases, even in case of
heavy VO error. In any tested condition, 10 s are sufficient to
yield perfect accuracy. It is surprising that, under reasonable
odometry performance, the system exceeds 80% accuracy
already from 2 s, as such short trajectories are by necessity
very simple, almost rectilinear segments.

B. Qualitative evaluation

To show the viability and performance of our method, we
set up another real-world experiment.

First, the operator and the drone are localized using the
proposed method, then the drone turns to the reconstructed
position of the operator, flies towards him, and lands at the
the position where the operator was standing, i.e. at the origin
of the operator frame {H}. Figure 2 illustrates the imple-
mented system, and the supplementary video demonstrates
many consecutive iterations of the procedure.

Figure 2 and the supplementary video also demonstrate our
relative localization approach integrated with our previously-



published system [1], where a drone is guided to land to
the precise spot indicated by the user. In this case, after the
relative localization procedure is completed, pointing rays
are interpreted by the robot in its own odometry frame; the
robot is controlled in real time to hover over the intersection
of such rays with the ground, and eventually land when the
user points to the same spot for a few seconds.

VII. CONCLUSIONS

We proposed a novel approach for recovering the relative
localization of an operator and a robot, which relies on the
innate ability of humans to point to an object they can see (in
this case, the robot), and on the robot’s odometry; despite the
imprecision intrinsic to pointing gestures, the approach yields
accurate relative localization from just a few seconds of data,
even when the robot’s odometry is affected by accumulating
errors. In case many robots are in the scene, the system is
easily extended to also identify the pointed robot.
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