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Abstract. We present a system which allows an operator to land a
quadrotor on a precise spot in its proximity by only using pointing ges-
tures; the system has very limited requirements in terms of robot capabil-
ities, relies on an unobtrusive bracelet-like device worn by the operator,
and depends on proven, field-ready technologies. During the interaction,
the robot continuously provides feedback by controlling its position in
real time: such feedback has a fundamental role in mitigating sensing in-
accuracies and improving user experience. We report a user study where
our approach compares well with a standard joystick-based controller in
terms of intuitiveness (amount of training required), landing spot accu-
racy, and efficiency.
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Videos, Datasets, and Code

Videos, datasets, and code to reproduce our results are available at:
http://people.idsia.ch/∼gromov/hri-landing.

1 Introduction

Modern quadrotors can perform fully-autonomous missions in unstructured out-
door environments (e.g. for mapping, surveillance, etc); however, one delicate
step in which human guidance, or at least supervision, is still necessary is land-
ing, especially if this has to occur in an unstructured or populated environment.
The landing spot should be sufficiently flat, dry, reasonably far from obstacles,
and free of features such as long grass that would interfere with the rotors. Not
surprisingly, many experienced pilots choose to land small quadrotors directly
on their hand—a solution that is unsafe for the unexperienced operator, and
unsuitable for larger quadrotors. In general, landing a quadrotor on an unpaved,
unstructured surface requires a careful and critical choice of the landing spot by
the operator. While approaches to automatically identify such potential landing
spots by means of on-board sensing have been proposed in the literature [21, 9],

http://people.idsia.ch/~gromov/hri-landing
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Fig. 1. One of the subjects pointing at the drone to select it (left), then guiding it
(center) to land on a target (right).

it is realistic to assume that in many real-world scenarios the guidance of an
operator in close proximity of the area will still be required, e.g. for avoiding
puddles—which may look like perfectly-flat spots in a 3D reconstruction.

The standard approach for landing a quadrotor is by guiding it using a joy-
stick; this is an efficient technique but requires the operator to be trained, and
requires the use of both hands. We target scenarios in which the operator is not
necessarily a trained pilot and may be in fact busy with other tasks. Such an
example could be found in the future of search and rescue missions with mixed
teams of humans and robots: a rescuer might need to land a quadrotor in its
vicinity (for changing a battery, retrieving a carried object, etc.) without having
a specific training; in this context, we assume that all potential operators wear
an unobtrusive, networked bracelet-like device (e.g. a smartwatch) and that they
can take control of a nearby drone to guide it to a safe landing spot.

Another realistic application is a drone delivery. Most part of such a mission
can be performed autonomously without human intervention: the drone takes off
and follows a set of way points to reach a house of the recipient, using for example
Global Positioning System (GPS); however, the GPS localization accuracy in
urban environments can be deteriorated and will not allow the drone to land
autonomously in a safe manner. In this case, the recipient could guide the drone
to a safe landing spot with a poining gesture.

We focus on this well-defined task and aim at providing a control modality
with the following characteristics.

• Practical/pragmatic: has no strong requirements on the drone or infrastruc-
ture capabilities and can be robustly applied to real-world systems in many
realistic conditions (outdoors, indoors).
• Intuitive: operators need minimal training to use it.
• Efficient : an operator can land a drone in a short time.

The interaction begins when the drone approaches a designated position after
completing an autonomous part of a mission. To initiate the landing procedure
an operator, e.g. a rescuer or a parcel recipient, points at the drone to select it. In
turn, the drone provides a visual feedback to confirm that the control has been
transferred to the operator, e.g. by performing a predefined motion primitive
or by blinking with its on-board lights. From that moment, the drone follows
and hovers over the location on the ground pointed by the operator. Once the
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operator is determined to land the drone, they simply keep the arm still for
a predefined time. A countdown timer starts and the system sends periodic
feedback to the user to notify them that the drone is about to land. In case
the operator decides to adjust the landing spot, they simply point at another
location, the countdown timer cancels and the landing procedure starts over
again. This interaction sequence is shown in brief in Figure 1, please refer to the
linked video for details.

In order to prove the viability of this control approach, we implemented it
and experimentally compared its performance with joystick-based control.

In the following sections we review the related work (Section 2), define the
major abstract functionalities required to realize the given interface and task,
and discuss implementation options (Section 3). We describe our implementation
of these functionalities in Section 4. To compare our approach with the classic
joystick-based control we set up an experiment, which is described in detail in
Section 5, the results are then analyzed in Section 6. Finally, in Section 7 we
draw the conclusions and describe the future work.

2 Related Work

Since pointing gestures are such a compelling solution to many human-computer
and human-robot interaction problems, significant research efforts have been
devoted to this topic. To the best of our knowledge, however, this work is the
first to approach the issue of landing a drone by using pointing gestures.

There are many works that use iconic gestures [22] to control drones [17, 20].
These can use hands, arms, or full-body postures to give discrete commands to
the drones, such as “go up”, “go down”, “turn left”, “take off”, etc. Although
these gestures may be represented by a pointing hand or arm, the exact direction
of this pointing is not important. On the contrary, we are interested in pointing
gestures that indicate precise directions and locations with respect to the user.
Therefore, below we only review the research related to this particular type of
pointing gestures and omit the interfaces based on iconic gestures.

Using pointing gestures as an input interface dates back to 1980s, when Bolt
presented his now famous work “Put-that-there” [2]. A multi-modal human-
computer interaction interface developed in that work was used to manipulate
virtual objects on a screen. The input interface consisted of a commercial speech
recognition system and a pose sensing device. The pointing device included a sta-
tionary transmitter of a nutating magnetic field and a small wired sensor placed
on the user’s wrist. Altogether the system allowed to manipulate objects using
simple voice queries like “Put that there”, where “that” would be supported by
one pointing gesture and “there” by another. In this case, Bolt argues, the user
even does not have to know what the object is or how it is called.

In HRI literature, pointing gestures are often used for pick-and-place tasks [4,
6, 5], labeling and/or querying information about objects or locations [4], select-
ing a robot within a group [16, 19], and providing navigational goals [25, 1, 26,
14, 12].
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One important issue to be solved in natural human-robot interaction that
involves pointing is a perception of the user’s gestures. This can be a respon-
sibility of a robot, i.e. the recipient of the message, as well as of a group of
cooperatively-sensing robots [19]; of the environment [27]; or, as in our case, of
a device worn by the user [23, 26, 12]. The first approach is the most popular
in HRI research. On one hand, it is natural because it mimics what humans do
when communicating with each other (the recipient of the message is the one
which perceives it). On the other hand, it presents important challenges to solve
the perception problem, and requires the robot to consistently monitor the user.
Relying on sensors placed in the environment relaxes the requirements on the
robots, but limits the applicability of the system to properly instrumented ar-
eas; in both cases, the positions being pointed at need to be inferred by external
observation, which is typically performed with cameras or RGB-D sensors.

2.1 Providing navigational goals

We now focus our review on pointing gestures for robot guidance.
Van den Bergh [25] used pointed directions to help a ground robot to explore

its environment. The robot continuously looks for a human in its vicinity and
once detected begins the interaction. Using an RGB-D sensor (Microsoft Kinect)
the system detects the human’s hand and wrist. A vector connecting the center
of the hand and the wrist is then projected on the ground, giving a principal
exploration direction. Finally, the next exploration goal is automatically selected
from a set of possible goals with respect to an instantaneous occupancy grid ac-
quired by the robot. The authors also suggest an alternative method to estimate
pointing directions, namely a line connecting the eyes and the fingertip, however
they do not elaborate on this approach.

Similarly to the previous work, Abidi et al. [1] use a Kinect sensor to extract
pointed directions. Navigation goals are continuously sent to the ground robot,
which reactively plans its motion and thus allows the user to correct her input on
the fly. The main drawback, however, is that the robot has to “keep an eye” on
the user in order to reach the final target. To estimate pointed locations authors
suggest two approaches: (1) a vector originating from the elbow and passing
the hand/finger, and (2) a vector originating from the eyes and also passing
the hand/finger. The approaches were compared in a user study, but the only
reported result is a subjective satisfaction level of the participants. The majority
(62%) preferred the second approach.

Jevtic et al. [14] experimentally compared several interaction modalities in
the user study of 24 participants. A ground robot equipped with a Kinect and
other sensors was used. The study compares three interaction modalities: direct
physical interaction (DPI), person following, and pointing control in area- and
waypoint-guidance tasks. The DPI modality requires the user to push the robot
by hands, the torques generated at motors are measured via electrical current
and then are fed to a friction-compensation controller that drives the robot in
the appropriate direction. The person following modality makes the robot to
follow the user at a safe distance, the user can stop the robot at any time by
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raising their left hand above the left elbow and thus can control the robot’s
precise location. The pointing modality allows the user to command the robot’s
position with a pointing gesture, where the target location is calculated from
the intersection of the ground plane with a line passing through the right elbow
and the right hand of the user. The authors measured task completion times,
accuracy, and workload (with NASA-TLX questionnaire). Reported results show
that the DPI modality is systematically better than the other modalities for all
the metrics, while the pointing control shows the worst results.

Such a low performance of the pointing interface used in the study by Jevtic
et al. [14] can be explained by a lack of appropriate feedback and a time-sparse
nature of the implemented gesture control: the user issues a single command to
drive the robot to a goal and see where the system “thinks” they were pointing
at only when the robot reaches the target, therefore, the user is unable to effi-
ciently correct the robot’s position. These problems are further aggravated by
an inherently limited precision of a chosen pointing model (elbow-hand). As re-
ported by many other works (see [1, 18, 6]), including those from the psychology
research (see [24, 13])—a more appropriate model would be a line that passes
through the head and the fingertip. Also note that contrary to the implemented
pointing control, the DPI and person following modalities work in the tracking
mode, that provides immediate feedback and allows the user to correct robot’s
position in the real time. As will be seen later, in our work we mitigate aforemen-
tioned flaws by making the robot to instantaneously follow to pointed locations,
and thus providing a real time feedback to the user. In our recent work [10] we
systematically compared users performance in a pointing task with and without
the visual feedback: we have shown that the lack of visual feedback results in
significant errors.

2.2 Wearable sensors

Wearable sensors are an alternative approach to the problem of perceiving point-
ing gestures. Sugiyama et al. [23] developed a wearable visuo-inertial interface
for on-site robot teaching that uses a combination of monocular camera and iner-
tial measurement unit (IMU) to capture hand gestures in the egocentric view of
the user. The camera is also used for a monocular simultaneous localization and
mapping (SLAM), which allows to localize the user with respect to a common
with the robot coordinate frame.

Wolf et al. [26] suggest a gesture-based interface for a robot control, that is
based on a device they call BioSleeve—a wearable device placed on the user’s
forearm and comprised of a set of dry-contact surface electro-myography sensors
(EMGs) and an IMU. Optionally, the authors suggest to strap an additional
IMU sensor on the upper arm to be able to perform a model-based arm pose
reconstruction for pointing gestures. However, no information is given on how a
user would localize themselves with respect to the robot in order to control its
position.
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2.3 Pointing direction estimation

Regardless on the specific approach adopted for sensing, assuming a perfect
knowledge of the user’s posture, one has to solve the problem of interpreting
such posture to map it to the point in the environment that the user wants to
indicate. This problem has been extensively studied in the psychology research
[24, 13] which suggests two main models: a) the forearm model assumes that the
point lies along the 3D line defined by the axis of the forearm of the pointing arm;
b) the head-finger model assumes that the point lies along the line connecting
the dominant eye and the tip of the finger. The choice of a particular model in
robotic applications mainly depends on the technology available for sensing the
user’s posture and on the task.

3 Model

In order to realize the task we have defined in the introduction, it is neces-
sary to address the following problems: a) estimation of the pointed directions
and locations with respect to the human, b) identification and localization of a
robot being pointed at, and c) detection of discrete triggering events that would
dispatch commands to the robot.

Pointed direction The pointed direction is recovered as a ray in 3D space,
expressed in a human-centered reference frame. The frame is fixed while the
interaction occurs and has its origin at user’s feet; its xy-plane is aligned with
the world’s horizon; the remaining degree of freedom (a rotation around the
vertical axis) is a free parameter. Without loss of generality, we can assume the
x-axis is the heading of the first pointing gesture, i.e. the one used to select the
robot.

A forearm-mounted IMU is a viable option to meet this requirement as long
as it can return accurate relative orientation data without significant drift for the
duration of the interaction, and can reliably estimate the vertical direction. A
more sophisticated approach may use additional sensors, e.g. multiple IMUs [26,
12], to model more accurately the arm kinematics. Since the IMUs provide only
a 3D-rotation, one will also need to acquire the position of the user’s shoulder
with respect to the human frame. It can be measured directly or estimated using
a simple calibration procedure.

Robot identification and pose reconstruction Since pointed direction is
expressed in human’s reference frame, it is necessary to find a coordinate trans-
formation between the human and a robot. We require that while a robot is
being pointed at, the system can detect it, identify it, and recover its 6D-pose
(3D-position + 3D-orientation) with respect to the human-centered frame.

In practice, this can be achieved in numerous ways: with a camera pointed
in the same direction as the forearm [12], which can detect the robot’s presence
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and identify its pose using pattern recognition techniques, e.g. relying on robot-
mounted visual fiducial markers [8], or detecting active LEDs [7].

Recently we described another efficient method to co-localize a user and a
robot [11]. The method relies on synchronized motion of user’s arm and the
robot: the user points and keeps following a moving robot they want to interact
with for a few seconds; the system collects synchronized pairs of pointing rays
expressed in user’s frame and robot’s positions expressed in its odometry frame,
the algorithm then finds the coordinate transformation between the human and
the robot that fits the captured movements the best.

Triggering We assume that the system implements a mechanism to trigger the
first and second pointing events (at robot and at target) and thus advance the
interaction.

A trivial approach is to use a push button on the wearable/handheld device,
which however prevents hands-free operation. Other realistic triggering mecha-
nisms include gestures, automatic detection of the start of a pointing gesture [18],
fixed time delays [5], or speech [12].

4 Implementation

We implemented a pointing-based interface that consists of two Myo armbands,
respectively placed on the upper arm and the forearm. We use a single sensor for
the arm pose estimation, however we use both for the gesture detection which
is described later.

Myo is an integrated wireless wearable sensor from Thalmic Labs1 comprised
of 9-DoF IMU, eight surface electromyography sensors (EMG) and a process-
ing unit. The device internally fuses the IMU data into an accurate absolute
3D-orientation (roll, pitch, and yaw angles) which we use for the arm pose esti-
mation. The inertial data is transmitted to the host PC over the Bluetooth LE
link at 50 Hz rate.

Pointed direction To estimate pointed directions we employ a head-finger
model—a popular choice in robotics [6, 5, 18, 15]—which requires the knowledge
of the arm and head positions. However, we simplify this model and assume that:
a) the head position is fixed with respect to the body; b) the user always points
with the straight arm, and c) the shoulder length (distance from the neck to the
shoulder joint) is zero.

Although these simplifications lead to higher lateral and radial static errors,
a live update of the drone’s position allows to efficiently mitigate them.

In this work we consider the arm as a single link with a 3-DoF ball joint
(shoulder) connected to a fixed vertical link (torso). We acquire the orientation
of the shoulder with a help of a single Myo armband placed on the forearm.

1 Myo has been discontinued as of Oct 12, 2018.
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Once we know the pointing direction with respect to the human’s shoulder we
can simply find the pointed location as an intersection of a line and the ground
plane.

Robot identification and pose reconstruction Since there is only one robot
to control, there is no need for robot identification.

In order to determine the robot’s location with respect to the operator, we
assume that the robot is flying at a known altitude over a flat floor; under this
assumption, the distance to the robot can be estimated from the pointing ray
alone, by intersecting it with the horizontal plane on which the robot is flying.

The only remaining parameter is the relative heading between the operator
and the drone. Most of the drones are equipped with an IMU for stabilization
purposes, and usually include a magnetometer—the sensor that estimates the
heading with respect to the Magnetic North, an absolute reference frame. There-
fore, the rotation between the frames is defined by the difference between the
human’s and robot’s absolute headings.

Triggering Using data from two wireless IMU sensors worn on the arm and
forearm, we follow a detection-by-classification paradigm and use a 1D convolu-
tional neural network as a binary classifier. Given the data acquired in the last
few seconds, the network predicts whether a pointing gesture occurred in this
interval. The network has been trained using data acquired from multiple users,
who were prompted by the system to perform the gesture at specific times [3].

Therefore, the action is triggered immediately once the user performs the
pointing gesture.

5 Experimental Setup

To confirm the viability of the proposed interface in a guided landing task, we
set up an experiment where the users are required to land a quadrotor (Parrot
Bebop 2) at a given location using two different interfaces: pointing gestures and
a regular joystick.

The experimental environment represents a flying arena with four predefined
targets. The targets are placed at the corners of a square with an edge of 3.6 m
and numbered in clockwise order. The sequence of the targets is predefined as
1–2–4–3–1, i.e. edge segments alternate with diagonal ones. The subjects were
asked to stay in the middle of arena, however they were allowed to step aside to
avoid collisions with the drone.

The arena is equipped with the Optitrack motion capture system that pro-
vides precise information of the drone’s position. This information is used, both,
to control the safety margins and to implement autonomous flights. Note, that
in general the robot is localized in an arbitrary frame, e.g. in its odometry frame
or, as in our case, in the motion capture frame; however, the location of the op-
erator with respect to robot’s frame is not known until the “Robot identification
and pose reconstruction” step has taken place.
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The drone closed-loop controller is built around bebop autonomy2 ROS-
package and accepts velocity and 6D-pose commands. While the joystick in-
terface generates velocity commands, the pointing interface supplies the pose
commands.

5.1 Subjects

Five people between 25 and 36 years old have volunteered to participate in the
experiment. Majority have reported either no experience in piloting RC-vehicles
or a little experience (“tried it a few times”).

We conducted two sessions per person: with the joystick and with the pointing-
based interface, each consisting of three runs. Each run starts and ends at target 1
and therefore provides four segments. This totals to 12 segments per person or
120 target-to-target segments for all the participants for both interfaces. Three
subjects started with the pointing interface and the rest with the joystick.

Prior to each experimental session, individually for each subject, we con-
ducted a training session with the same interface that they were given later.
Each training session consisted of two runs.

Two training sessions plus two experimental sessions took approximately
40 minutes per person, including all the explanations, service times (e.g. replac-
ing the drone’s battery), etc.

5.2 Experimental sequence

At the beginning of each session the drone is placed at target 1. Once the super-
visor starts the session the drone takes off automatically. Once it is airborne and
stable, it aligns itself with the first target of the segment and turns its back to
the user, such that the user’s controls, both, for the joystick and for the gestures,
are aligned, meaning, e.g., that pushing joystick forward would drive the drone
away from the user, in the direction they look to. This way we ensure that the
landing errors are not accumulated over the course of experiment and that all
the subjects start in equal conditions, both, when controlling the drone with
pointing gestures and with a joystick.

From this moment the drone is ready to interact with the user. Once the user
lands the drone, it will perform the automatic take off procedure with a delay
of 5 seconds from the moment it has been landed. This procedure repeats until
the list of targets is exhausted.

Since the interaction pattern with the joystick and the gesture-based interface
are slightly different we report them separately.

Pointing-based interface The user points at the floor beneath the drone, i.e.
at the crosshair of the target, to select it3. The Myo on the user’s arm vibrates

2 http://wiki.ros.org/bebop autonomy
3 Although the drone can be selected in the air, this brings additional error to the

relative localization and may deteriorate user experience.

http://wiki.ros.org/bebop_autonomy
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and the drone ‘jumps’ to signify that it is now being controlled by the user. At
the same time, the control station gives a voice feedback through a loudspeaker,
telling the user the next target they should bring the drone to. Immediately
after that the drone starts to continuously track a newly given location. Once
the user is ready to land the drone, they have to maintain the pointed location
for approximately half a second. The system starts to count down and makes
the upper arm Myo to vibrate every second. The user has about 3s to change
their mind. To adjust the landing position they just have to start moving the
arm away and the countdown will be canceled.

Joystick The behavior of the system in this mode is similar, however the drone
is selected automatically and performs the same ‘jump’ motion as in pointing-
based interaction mode, meanwhile the control station gives a voice feedback
with the next target number. The user then moves the drone to the required
target and presses the button on the joypad to land the drone.

5.3 Performance Metrics

We define a set of performance metrics to compare the performance of two
interfaces:

• Landing error. Euclidean distance between the requested landing target Pi

and the actual position pa the drone have landed to: ε = |pa − Pi|.
• Time to target. Time that passed from the moment t0 the drone has moved

20cm away from its starting pose till the moment t1 the user gave command
to land it: τ = t1 − t0.

• Trajectory length. Line integral of the trajectory curve from the start position
Pi−1 to the actual landing position pa: ρ =

∑N
k=1 ‖pk+1 − pk‖, where pk ∈

{p1, ...pN} is a set of all the acquired positions of the drone between Pi−1

and pa.

We collect the data with a standard ROS tool rosbag and analyze it offline.

6 Results

Landing Error Figure 2 reports the landing error metric. We observe no sta-
tistically significant difference between the results with the two interfaces; we
separately report the error (left pair) and its decomposition in a radial (central
pair) and tangential (right pair) component with respect to the user’s position.
It’s interesting to note how the radial component dominates the error in both in-
terfaces, which is expected since the radial component corresponds to the depth
direction from the user’s perspective: along this direction, the quadrotor’s mis-
alignment with respect to the target is much more difficult to assess visually;
the landing error is dominated by a perception (rather than control) issue.
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Fig. 2. Statistical analysis of the landing error metric (N = 60 for each interface).

Time to Target Figure 3 (left) reports the time to target metric, separately for
each of the four segments. We observe that the pointing interface yields a better
average performance; the difference is statistically significant under Student’s
t-test (p < 0.01) for 3 of the 4 segments and for the mean over all segments.

Trajectory Length Figure 3 (right) reports the trajectory length metric, sep-
arately for each of the four segments. We observe that the pointing interface
consistently yields shorter trajectories than the joystick interface; the difference
is statistically significant under Student’s t-test (p < 0.01) for all four segments.
On average over all segments, the joystick interface yields a 66% longer trajec-
tory than the straight distance between the targets; the pointing interface yields
a 33% longer trajectory.

One can also observe this phenomenon in Figure 4: the trajectories flown
with the pointing interface are smoother and more direct and tend to converge
faster to the target (Figure 5).
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7 Conclusions

We proposed a novel human-robot interface for landing a quadrotor based on
pointing gestures detected by means of unobtrusive wearable sensors. The in-
terface has minimal requirements in terms of robot capabilities, and extensively
takes advantage from real-time feedback. In a preliminary user study, it com-
pares favorably with a traditional joystick-based interface in terms of efficiency
and intuitiveness.
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