
Intuitive 3D Control of a Quadrotor in User Proximity
with Pointing Gestures

Boris Gromov, Jérôme Guzzi, Luca M. Gambardella, Alessandro Giusti

Abstract— We present an approach for controlling the posi-
tion of a quadrotor in 3D space using pointing gestures; the task
is difficult because it is in general ambiguous to infer where,
along the pointing ray, the robot should go. We propose and
validate a pragmatic solution based on a push button acting as a
simple additional input device which switches between different
virtual workspace surfaces. Results of a study involving ten
subjects show that the approach performs well on a challenging
3D piloting task, where it compares favorably with joystick
control.

VIDEOS, DATASETS, AND CODE

Video, datasets, and code to reproduce our results are
available at: http://people.idsia.ch/˜gromov/
3d-pointing

I. INTRODUCTION

Pointing gestures are an attractive modality for human-
robot interaction; it is pervasive in human-human communi-
cation and thus natural and intuitive to use. In our everyday
lives, we point to give directions, refer to places, objects,
and even events that happened in the past [1]. In human-robot
interaction, pointing is a popular choice for tasks that require
explicit and precise position information: for example, to tell
an assistant robot to pick up a tool or to move to a location.

We consider pointing as an input interface for controlling
robots within proximity and within visual contact of an
operator. The operator controls the mobile robot by pointing
at a desired target position pt in 3D space for the robot to
reach; the robot moves there, and keeps tracking the updated
position of pt when the operator points at another location.
This allows the operator to finely control the robot in a
continuous fashion, and drive it along complex trajectories.

This control modality is attractive because it features no
indirection between human commands and robot actions. The
operator acts directly in their local reference frame without
the need to account for a possible coordinate frame mismatch
between the input interface and the robot. Once the operator
has identified a target for the robot, the cognitive effort
required to point at it is minimal.

In our previous work [2], we have shown that pointing
can be efficiently used to guide flying robots on com-
plex 2D trajectories constrained to a horizontal plane at
a predetermined height over a horizontal floor. This work
extends the approach and proposes an efficient way to control
flying robots also in 3D. Most operators who tested our

(*) Boris, Jérôme, Luca, and Alessandro are with the Dalle Molle Institute
for Artificial Intelligence (IDSIA USI-SUPSI), Lugano, Switzerland. Email:
{boris,jerome,luca,alessandrog}@idsia.ch.

po

ωo

pt
r

Fig. 1. The operator controls a quadrotor in 3D by pointing. A pointing
ray r originating at po intersects a cylindrical workspace surface at pt and
fully defines the target position for the quadrotor, which tracks it in real
time. In this paper, we investigate how, by switching workspace surfaces
using a push button, an operator can freely control the robot’s position in
3D.

previous prototypes expressed the wish for such a feature,
but designing it faces a fundamental challenge: the act of
pointing by itself does not uniquely identify the desired target
position pt. In fact, a given pointing stance defines a pointing
ray r in 3D space, originating at the operator’s body and
extending to infinity along a given 3D direction: the desired
target position pt might lie anywhere on r.

In certain cases we can use additional assumptions to
determine the target point pt on the pointing ray: 1) If the
robot’s motion is constrained to a plane (e.g. a ground robot
on flat ground, or a flying robot moving at a fixed height) one
can identify pt as the intersection between r and such plane,
as in our previous work [2]; 2) If the target pt lies very close
to a solid surface of the environment (e.g. a ground wheeled
or legged robot that travels on a generic terrain, including
indoor environments with stairs; or a flying inspection robot
that follows a complex 3D structure), pt can be identified by
intersecting r with a known model of the world’s surfaces.

In this paper we consider a control of a quadrotor that
freely moves in 3D space, where neither of these constraints
apply; it is therefore impossible to unambiguously determine
pt from r; we further assume that the operator controls the
robot in a continuous fashion accounting for their perception
of the robot’s position. Even with this assumption, the
problem is underconstrained: consider the case in which the
operator is pointing at the robot while it flies few centimeters
from the ground and one meter in front of them. The operator
then adjusts their pointing stance by slightly increasing the
elevation of their arm. Does this mean that the robot should
move farther from the user while staying at the same height,
or that it should move up?

http://people.idsia.ch/~gromov/3d-pointing
http://people.idsia.ch/~gromov/3d-pointing


After reviewing related work (Section II), we describe our
main contribution (Section III): a pragmatic solution to the
above problem, which relies on a well-defined user-centric
set of virtual workspace surfaces that do not depend on the
environment; the user switches between these surfaces with
an additional control input; in practice, such input could be
a push button held in either the pointing or free hand (see
Figure 1), or a detector of specific gestures or simple voice
commands. Section IV describes our implementation that is
experimentally assessed in Section V, and Section VI reports
experimental results from our user study.

II. RELATED WORK

A large number of works on gesture-based drone inter-
action are based on iconic gestures [3, 4, 5]. These can use
hands, arms, or full-body postures to give discrete commands
to a drone, such as “go up”, “go down”, “turn left”, “take
off”, etc. Although these gestures may be represented by a
pointing hand or arm, the exact direction of this pointing is
not important. On the contrary, we are interested in pointing
gestures that indicate precise directions and locations with
respect to the user. Therefore, we only review the research
related to this type of pointing gestures and omit interfaces
based on iconic gestures.

Pointing gestures is a skill that humans develop since an
early age [6]. They are used in everyday lives to efficiently
communicate locations and directions in the surrounding 3D
space to other people. It also has been shown that people
naturally choose to use pointing gestures when they need to
command a drone to move to a precise location [7]. For these
reasons pointing gestures are a popular choice in robotics,
where they are typically used for tasks such as pick-and-
place [8, 9, 10], object and area labeling [11], teaching
by demonstration [12], point-to-goal [13, 14], selection of
a robot within a group [15, 16], and assessment of joint
attention [17].

The problem of using pointing gestures consists of two
parts: perception of the gesture itself and estimation of
the pointed location. The perception of gestures can be
performed by a robot or by a group of robots [18, 16],
by instrumented environment [19], or, as in our case, by a
device worn by the user [12, 13, 15]. The first approach is
the most popular in human-robot interaction (HRI) research,
however it requires solving a challenging perception prob-
lem because the robot has to continuously sense the user.
Relying on sensors placed in the environment relaxes the
requirements on the robots, but limits the applicability of
the system to properly instrumented areas; in both cases, the
positions being pointed at need to be inferred by external
observation, which is typically performed with cameras or
RGB-D sensors.

Regardless of the specific approach adopted for sensing,
assuming a perfect knowledge of the user’s posture, one
has to solve the problem of interpreting such a posture and
mapping it to the point in the environment that the user
wants to indicate; this is typically solved in two steps: first,
identify a direction (i.e. a ray in 3D space); then, relate such

ray with the environment to get a point or object. The first
step is typically solved by defining a ray that originates at
head ([20, 21, 22, 23] or at arm ([22, 8, 24, 25]) and passes
through another point located on the arm, for example, tip
of the index finger. Different configurations of these two
points define a number of pointing models, in particular in
robotics [8, 10, 22, 24]: head-finger, upper arm, and forearm
models. In this work, we employ the head-finger model.

Once the pointing direction is found one needs to iden-
tify the pointed location or object. This is typically done
by intersection of the pointing ray with the environment.
For example, with large public displays [26, 27, 28] or
with the model of the environment acquired with depth
sensors [8, 9, 10].

Our goal, however, is to define a target 3D position in
free space. An interesting approach to this problem is to
use motion scaling within pick-and-place paradigm [29]:
the user “picks” a drone with the pinch gesture as if it is
within arm’s reach and moves the hand to a new location to
“place” the drone there; the 3D offset of the hand defines
a displacement vector that is applied to the drone but is
scaled proportionally to the user–drone distance. A similar
image plane manipulation technique was earlier also pro-
posed for object manipulation in virtual environments [30].
This approach has two drawbacks: 1) because the hand’s
and drone’s displacement vectors are parallel it might be
difficult for a user to visualize where the drone will end up;
2) inherently limited range of motion of the hand limits the
range of motion of the drone.

We approach the problem of defining 3D positions in
free space by introducing virtual workspace shapes that
constrain the motion of the robot on a given surface, e.g.
plane, cylinder, or sphere. As compared to image plane
manipulation techniques, our approach allows one to easily
predict the target position of the robot and, technically, allows
the user to position a robot in entire 3D space.

III. MODEL

A. Target point

In this work, we assume that the robot and the operator
are localized in a common reference frame. In practice, we
can estimate the transformation between their relative frames
with collaborative visual-inertial SLAM methods [31] or a
technique that compares the motion of a robot and an arm
that points at it [32].

The operator indicates a target point pt by pointing. We
assume that pt lies on a pointing ray r. To identify r, we
adopt a simplified version of the head-finger model (eye-
finger ray cast method by Mayer et al. [21]) which defines r
as the half-line originating at the operator’s dominant eye at
point po and passing through the tip of the pointing finger,
located at the end of a straight arm with orientation ωo, which
is measured by a wrist-mounted IMU.

With the further assumption that eye and shoulder are
vertically aligned (and that shoulder height, shoulder-finger
length, shoulder-eye distance are known), we can reconstruct
r = r(ωo; po). When the origin po of the ray is fixed, the



a) c)b) d)

po

ωo

pt

Scylinder Sh-plane

po

ωo

pt

po

ωo

pt Sh-plane

r r

r

Fig. 2. Interaction using workspace shapes: a) guiding the drone in the primary workspace Scylinder; b) switching to the secondary shape by pressing a
button; c) guiding the drone in the secondary workspace Sh-plane; d) while the drone flies close to eye height, the user is forbidden to switch the workspace
to Sh-plane: in this case the pointing ray is almost parallel to the virtual surface, which prevents accurate control of the drone’s distance.

operator has two degrees of freedom (the arm orientation) to
move r and point to a different target.

We define pt as the intersection of the pointing ray r with
a workspace surface S: pt = r ∩ S, i.e., the operator, by
moving their arm, moves a well-defined 3D target point on
a two dimensional surface.

We have previously shown [2] that intersecting the point-
ing ray with a horizontal plane is effective to define target
positions for a ground robot or a quadrotor constrained to
fly at a fixed height. In this work, we let the operator switch
between different workspace surfaces (see Figure 2) to enable
quadrotor control in the entire 3D space.

B. Workspace shapes

We considered several options for workspace shapes:
vertical-axis cylinder, horizontal plane, sphere, and vertical
plane. We now describe the first two: their combination
allows the operator to reach any position in 3D space effi-
ciently and in an intuitive way. The supplementary appendix
motivates this choice in detail and discusses drawbacks of
other options.

Each shape is defined as a one parameter family of
surfaces: when the user switches to the shape, the free
parameter is set in such a way that the surface passes through
the current position probot of the robot.

a) Cylinder Scylinder: with a vertical axis passing
through the user’s head (po); the cylinder radius is the free
parameter. This option allows the operator to control the
robot’s vertical position without limitations, never affecting
the horizontal distance to the operator.

b) Horizontal plane Sh-plane: with the distance from the
ground plane as the free parameter. This workspace serves a
similar role to the ground plane that humans have a life-long
experience with: it is a natural choice for indicating locations
and an intuitive tool to control the robot’s position on that
plane, but does not allow height control.

To achieve intuitive interaction, an operator should always
have a clear idea of the workspace the robot is operating in;
if the workspace shape is known, the robot position itself
uniquely defines the workspace surface S. For example, if
the workspace shape is Sh-plane, the user can expect that the
robot will keep its current vertical position; if the workspace
shape is Scylinder, one can easily visualize the user-centered

cylinder passing through the robot. In turn, if S is known,
the user can always predict pt given r.

IV. IMPLEMENTATION

A. Gesture sensing

We implemented the system using an inexpensive wear-
able IMU (Mbientlab MetaWearR+ [33]) that has a form-
factor of a wrist smartwatch (Figure 3, right). The device
is equipped with a three degrees of freedom (3-DoF) ac-
celerometer, 3-DoF gyroscope, and 3-DoF magnetometer.
The onboard firmware runs the necessary sensor fusion
algorithms in real time and outputs an accurate estimation
of the device’s absolute 3D-orientation in an arbitrary fixed
reference frame whose z-axis points up. The data is streamed
to the host PC with approx. 50 Hz rate via a Bluetooth 4.0
link.

The acquired orientation data is used without additional
filtering within the head-finger pointing model (described in
Section III) to recover r, which is then intersected with the
active workspace surface S to define the pointed-to location.

B. Workspace switching

We define Scylinder as the primary workspace shape (Fig-
ure 2a), i.e., the one that is active by default; Sh-plane is
considered a secondary shape (Figure 2b), i.e., one that user
can switch to upon request (Figure 2c).

The operator switches between the two shapes using a
single spring-loaded trigger button on a joystick (Logitech
F710); the other joystick buttons and controls are ignored in
our experiments. When the trigger is in its default position
(not pressed), the primary workspace is used; keeping the
trigger pressed uses the secondary workspace. This specific
choice is crucial for usability, for two reasons.

First, mapping the explicit state of the button to the chosen
workspace shape ensures that the operator is kept aware of
the system state—the user must consciously keep the button
pressed. On the contrary, toggling the active workspace once
the button is released, would make the state implicit (the one
the user cannot directly observe).

Second, the trigger functions as a dead man’s handle
and ensures a fail-safe behaviour by switching the active
workspace to the primary (cylinder) configuration when the
trigger is released. Since the cylinder workspace is centered



Fig. 3. The hardware used in the experiments: (left) Bitcraze Crazyflie 2.0
quadrotor with retro-reflective markers for motion capture system; (right)
Mbientlab MetaWearR+ IMU bracelet.

around the user, it is impossible for the robot to collide
with them because of a control mistake. For this reason, the
system may also refuse to switch to the secondary workspace
if it is considered unsafe: in particular, when the drone is
flying close to the height of the user’s eyes, the pointing
ray is almost parallel to the horizontal plane; in this case,
small changes in the arm elevation would result in very large
displacements of the pointed location. For this reason, we
prevent switching to the secondary workspace if the elevation
angle of the drone with respect to the user’s head is within
±5◦ from the horizontal direction (see Figure 2d). Whenever
a requested switch to the secondary workspace is refused,
the joystick vibrates to make sure the operator is notified; a
better approach would be to mechanically prevent the trigger
button from being pressed when a switch to the secondary
workspace would be denied.

C. Flying arena and quadrotor control

Experiments take place in a room with a safety net,
outfitted with a commercial optical motion capture system
(12 Optitrack PRIME17-W cameras). The Optitrack data is
streamed to the Robot Operating System (ROS) with 30 Hz
rate. We use a miniature quadrotor Bitcraze Crazyflie 2.0 [34]
tracked through a rigid-body marker (Figure 3, left). We
also track the location of the user’s head through a rigid-
body marker attached to a hat. Tracking data is only used
for quantitative performance evaluation of experimental runs:
the proposed approach is based solely on IMU readings and
does not assume that a motion tracking system is available.

D. Human parameters

We configure the kinematic parameters of the human body
required by the pointing model before the interaction starts:
we set the height of the user’s shoulder and head, and the
length of the user’s arm.

V. EXPERIMENTS

We conducted an experimental study that evaluates the
performance of the proposed 3D-control method against
conventional joystick control—the standard interface for
manual quadrotor control tasks. Unlike our approach, which
implements position control, joysticks operate in the velocity
space (one stick controls the vertical velocity and yaw,

T1

T2

T3

P1

P2

P3

Fig. 4. An overview of the experimental environment during one of the
sessions. The LED targets T1,2,3 are placed at the wheel hubs at different
heights; the user positions are defined at P1,2,3.

whereas the other stick controls the velocity along the drone’s
x and y axes). This is a key difference, which we further
discuss in Section VI-A.

A. Setup

We recruited 10 participants (male, mean age 31.1, sd =
5.0) with computer science background, whose goal was
to fly the miniature quadrotor over a set of three flat
stationary wireless LED beacons (in-house hardware based
on Adafruit nRF52 Feather Bluetooth LE board with a ring
of 24 RGB NeoPixel LEDs) placed at different predefined
heights at known locations (Figure 4).

For each subject we recorded two sessions: one, using
the pointing interface (IMU-equipped bracelet on the wrist
of their dominant arm); and another, using joystick control
(Logitech F710). The order of the sessions was assigned to
each subject at random. Each session consisted in three runs.
During each run a subject was asked to stand at predefined
locations 1–3 and to fly the quadrotor between given targets.
The following high-level description of the task was given
to participants: “once a target gets illuminated, fly the drone
above it”.

All subjects reported to be proficient or expert joystick
users, and had little or no previous experience with the
proposed pointing interface. Short “dry run” sessions were
performed for all the users to familiarize them with both
interfaces and the task.

The experimental session with the pointing interface pro-
ceeds as follows: 1) The operator enters the flying arena and
stands at the location 1, the quadrotor lies on the floor at
the center of the room; 2) The operator presses once the
switch on the bracelet to take off the drone, and second time
to initiate the interaction; 3) The operator then points at the
drone and holds his arm still for 3 seconds; 4) The bracelet
vibrates, the drone makes a small “jump” to show that it
is now attached to the operator; the workspace is initialized
with the primary surface (cylinder); 5) One of the targets
lights up in blue; 6) The operator directs the robot to the
target, while when necessary switches the active workspace
to secondary surface (horizontal plane); once within the
confirmation zone (10 cm from target’s center in horizontal
plane and 20 cm in along z-axis), the target turns yellow and



2 4 6 8 10 12
0.0
0.5
1.0
1.5
2.0
2.5
3.0

2 4 6 8 10 12 2 4 6 8 10 12

joystick
pointing

JOYSTICK POINTING COMPARISON OF MEANS

Time, [s]Time, [s]Time, [s]

D
is

ta
nc

e
to

Ta
rg

et
,[

m
]

Fig. 5. Analysis of the evolution in time of the distance to the target, for each trajectory flown; each trajectory is represented as a line; t = 0 on the plot
corresponds to the t0 time of each trajectory. Left: joystick interface (N = 90). Center: pointing interface (N = 90). Right: average over all trajectories
for each interface.

a timer is triggered; 7) To clear the target the subject must
keep the robot within the confirmation zone for 2 seconds.
Then, the target shortly turns green and switches off; if the
robot leaves the confirmation zone before the two seconds
expire, the target turns blue and the timer is reset; 8) Once
a target is cleared, the next target lights up in blue: steps 5–
7 are repeated; 9) Once all targets are cleared, the operator
directs the quadrotor to the landing spot and lands it there
by holding their arm still for 3 seconds; 10) The operator
moves to the next numbered location and the steps 2–9 are
repeated until all three runs are completed.

The procedure for experiments with the joystick is similar,
but omits steps 3 and 4 of the above sequence (selection
of the quadrotor and switching of the workspace surfaces),
which are specific to the pointing interface.

B. Data collection

To assess the performance of the system, we collected the
ground truth positions of the participants and the quadrotor,
and the times of state transition events of the targets. In
our analysis, we ignore parts of the trajectories from the
moment the operator takes control till the moment the first
target is cleared and from the moment the last target is
cleared till the landing as they do not represent the actual
task. We split the resulting trajectories in three segments.
Each segment represents a part of the trajectory between two
targets. This yields a total of 90 segments for each modality
(pointing, joystick), i.e. three segments per run per operator
per location. We collect the data with a standard ROS tool
rosbag and analyze it offline using Python.

To compare the performance of the two interfaces we use
the time-to-target and the trajectory length metrics, which
are applied per segment of the flight path.

VI. RESULTS

On Figure 5 we report an evolution of the distance to
target in time; the comparison of means on the right plot
shows that the performance of both interfaces is very similar.
These results also confirm our previous finding for a similar
2D task [2].

To find exact differences in performance of the two
interfaces, we further analyze relative lengths of trajectories

flown with each interface. This measure is calculated as
a ratio between the length of a segment flown and the
length of an ideal trajectory flown by an optimal controller,
i.e. a straight distance between corresponding targets. The
closer the relative length to 1.0, the better the performance
of a given interface. Figure 7 shows these data on a 2D
plot, where median relative lengths for pointing and joystick
interfaces define the x and y coordinates of black dots and
their mean values define blue crosses. The relative length of
trajectories flown with pointing is shorter than the one for
joystick interface.

In Table I, we present a detailed comparison of median
and mean trajectory lengths (relative to straight line) and
median and mean times to target for the two interfaces.
For each subject (rows) we report the median and mean
performance over all segments, for each of the two control
modalities (columns). Since the samples are matched, i.e. we
can compare the performance of the same subject on both
control modalities, the hypothesis that pointing yields better
performance than joystick—lower length or duration—can be
assessed for statistical significance using a paired difference
test. Because the sample size is small and the population
cannot be assumed to be normally distributed [35], we
use the Wilcoxon signed-rank test [36] as an alternative to
the paired Student’s t-test. We found that pointing yields
shorter trajectories (p = 0.046) than joystick; the impact
of the control mode on trajectory duration is not statistically
significant, even though median duration is slightly better for
pointing (14.4 s) than for joystick (15.4 s).

A. Discussion

The shorter lengths obtained with the pointing interface
can be explained by smoother trajectories. In fact, visual
comparison of trajectory segments performed with the two
interfaces (Figure 6) shows that joystick trajectories are
comprised of multiple orthogonal pieces in both vertical and
horizontal planes, while for pointing that is true only for
vertical segments. On the other hand, the time to target
metric did not show statistically significant improvement.
These results could be due to several reasons.

First, with the pointing interface the operator directly in-
dicates the target position, meaning that low-level trajectory



−1.5
−1.0
−0.5

0.0
0.5

1.0
1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

↓
T1

T3

T2

Human

−1.5
−1.0
−0.5

0.0
0.5

1.0
1.5

−1.0
−0.5

0.0
0.5

1.0
1.5 ↓

T1

T3

T2

Human

Fig. 6. Visualization of segments of a trajectory performed with joystick (left) and pointing (right), where the green part of the trajectory is performed
using Scylinder and the red one using Sh-plane. The short cylinders represent the targets, the tall thin cylinder represents the user, and the arrow is the start
of the trajectory.

1.0 1.5 2.0 2.5 3.0
JOYSTICK trajectory length

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

PO
IN

T
IN

G
tr

aj
ec

to
ry

le
ng

th

POINTING is better

JOYSTICK is better

sam
e pe

rfo
rm

an
ce

median
mean for a subject[r

el
at

iv
e

to
st

ra
ig

ht
lin

e]

[relative to straight line]

Fig. 7. Relative lengths of the trajectories flown with the pointing and
the joystick interface, normalized by straight distances between targets.
The black dots and the blue crosses represent median and mean values
respectively for each user (Nu = 10). The error bars represent 25-th to
75-th percentile.

execution (e.g. deceleration when approaching the target)
is performed automatically and more efficiently. On the
contrary, with the joystick interface operators give commands
in velocity space and have to plan the trajectory themselves.
This leads to a sub-optimal control and results in longer
trajectories.

Second, quadrotor control with pointing requires more
attention from the operator because they cannot “pause”
the interaction: once they are attached to the drone they
should be careful with the movements of their pointing
arm as it immediately translates into the movements of the
robot. On the contrary, joystick interface allows to leave
the controls at any moment—the drone will just stop and
hover. Our intuition is that these differences lead to different
strategies adopted by the participants: with pointing they tend
to be precise and slow, while with joystick more aggressive,
resulting in trial-and-error approach with fast and less precise
commands.

TABLE I
PERFORMANCE PER SUBJECT (MEDIAN AND MEAN OVER ALL SEGMENTS)

Trajectory length,
[relative to straight line] Duration, [s]

Subject JOYSTICK POINTING JOYSTICK POINTING

med mean med mean med mean med mean
1 1.72 1.92 1.53 1.95 11.6 12.7 10.4 14.9
2 1.57 1.46 1.72 1.81 16.8 18.2 16.5 18.1
3 2.00 2.08 2.08 2.15 13.3 13.9 11.5 12.7
4 2.48 2.70 1.84 1.92 25.8 26.2 15.7 15.9
5 2.47 2.73 1.81 1.74 19.8 18.6 14.8 16.4
6 1.40 1.52 1.21 1.33 14.4 14.8 11.9 11.8
7 2.41 2.44 2.08 2.34 15.6 16.0 22.2 21.8
8 1.56 1.55 2.09 2.21 10.2 10.7 11.8 14.1
9 1.86 2.00 1.65 1.91 11.1 12.3 14.9 15.5
10 2.04 2.19 1.55 1.67 15.6 15.4 14.0 15.2

The better result of the two interfaces is shown in bold.

VII. CONCLUSIONS

We presented an intuitive interface for controlling a drone
in 3D space using pointing. Although, this control mode
has only two degrees of freedom it can be efficiently used
when combined with dynamic geometrical constraints im-
posed by switching workspace surfaces. We have shown that
intersecting a pointing ray with such surfaces allows one
to efficiently control the robot in the entire 3D space. In
particular, a combination of a cylindrical and a planar shape
allows operators to precisely control a quadrotor to fly above
targets located at different heights.

The current work focused on assessing the operators’
performance who used the pointing interface for the first
time. We think that, after using the interface for an extended
period, operators may perform significantly better using
pointing than using a joystick, as already demonstrated by a
few more expert users.

ACKNOWLEDGMENTS

This work was partially supported by the Swiss National
Science Foundation (SNSF) through the National Centre of
Competence in Research (NCCR) Robotics.



REFERENCES

[1] S. Kita, Ed., Pointing: Where language, culture, and
cognition meet. Manwah, NJ: Lawrence Erlbaum
Associates, 2003.

[2] B. Gromov, G. Abbate, L. Gambardella, and A. Giusti,
“Proximity human-robot interaction using pointing ges-
tures and a wrist-mounted IMU,” in 2019 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
May 2019, pp. 8084–8091.

[3] W. S. Ng and E. Sharlin, “Collocated interaction with
flying robots,” Proceedings - IEEE International Work-
shop on Robot and Human Interactive Communication,
pp. 143–149, 2011.

[4] K. Pfeil, S. L. Koh, and J. LaViola, “Exploring 3d
gesture metaphors for interaction with unmanned aerial
vehicles,” Proceedings of the 2013 international con-
ference on Intelligent user interfaces - IUI ’13, p. 257,
2013.

[5] M. Obaid, F. Kistler, G. Kasparaviciute, A. E. Yantac,
and M. Fjeld, “How would you gesture navigate a
drone?: a user-centered approach to control a drone,”
in Proceedings of the 20th International Academic
Mindtrek Conference on - AcademicMindtrek ’16, 2016,
pp. 113–121.

[6] G. Butterworth, Pointing: Where language, culture, and
cognition meet. Manwah, NJ: Lawrence Erlbaum
Associates, 2003, ch. Pointing is the royal road to
language for babies, pp. 9–33.

[7] J. R. Cauchard, J. L. E. Kevin, Y. Zhai, and J. A.
Landay, “Drone & Me: An Exploration Into Natural
Human-Drone Interaction,” UbiComp ’15, pp. 361–365,
2015.

[8] D. Droeschel, J. Stückler, and S. Behnke, “Learning to
interpret pointing gestures with a time-of-flight cam-
era,” Proceedings of the 6th international conference
on Human-robot interaction - HRI ’11, pp. 481–488,
2011.

[9] B. Großmann, M. R. Pedersen, J. Klonovs, D. Herzog,
L. Nalpantidis, and V. Krüger, “Communicating Un-
known Objects to Robots through Pointing Gestures,” in
Advances in Autonomous Robotic Systems 15th Annual
Conference, TAROS 2014. Birmingham: Springer,
2014, pp. 209–220.

[10] A. Cosgun, A. J. B. Trevor, and H. I. Christensen,
“Did you Mean this Object?: Detecting Ambiguity
in Pointing Gesture Targets,” in HRI’15 Towards a
Framework for Joint Action Workshop, 2015.

[11] A. J. B. Trevor, J. G. Rogers, A. Cosgun, and H. I.
Christensen, “Interactive object modeling & labeling
for service robots,” ACM/IEEE International Confer-
ence on Human-Robot Interaction, p. 421, 2013.

[12] J. Sugiyama and J. Miura, “A wearable visuo-inertial
interface for humanoid robot control,” in ACM/IEEE
International Conference on Human-Robot Interaction.
IEEE, mar 2013, pp. 235–236.

[13] M. T. Wolf, C. Assad, M. T. Vernacchia, J. Fromm,

and H. L. Jethani, “Gesture-based robot control with
variable autonomy from the JPL BioSleeve,” Proceed-
ings - IEEE International Conference on Robotics and
Automation, pp. 1160–1165, 2013.

[14] A. Jevtić, G. Doisy, Y. Parmet, and Y. Edan, “Com-
parison of Interaction Modalities for Mobile Indoor
Robot Guidance: Direct Physical Interaction, Person
Following, and Pointing Control,” IEEE Transactions
on Human-Machine Systems, vol. 45, no. 6, pp. 653–
663, 2015.

[15] B. Gromov, L. M. Gambardella, and G. A. Di Caro,
“Wearable multi-modal interface for human multi-robot
interaction,” 2016 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), pp. 240–
245, 2016.

[16] S. Pourmehr, V. Monajjemi, J. Wawerla, R. Vaughan,
and G. Mori, “A robust integrated system for selecting
and commanding multiple mobile robots,” Proceedings
- IEEE International Conference on Robotics and Au-
tomation, pp. 2874–2879, 2013.

[17] A. G. Brooks and C. Breazeal, “Working with Robots
and Objects: Revisiting Deictic Reference for Achiev-
ing Spatial Common Ground,” Gesture, pp. 297–304,
2006.

[18] A. Giusti, J. Nagi, L. Gambardella, and G. A. Di
Caro, “Cooperative sensing and recognition by a swarm
of mobile robots,” IEEE International Conference on
Intelligent Robots and Systems, pp. 551–558, 2012.

[19] Z. Zivkovic, V. Kliger, R. Kleihorst, A. Danilin,
B. Schueler, G. Arturi, C.-C. Chang, and H. Aghajan,
“Toward low latency gesture control using smart camera
network,” in Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW’08. IEEE Computer Society
Conference on. IEEE, 2008, pp. 1–8.

[20] K. Plaumann, M. Weing, C. Winkler, M. Müller, and
E. Rukzio, “Towards accurate cursorless pointing: the
effects of ocular dominance and handedness,” Personal
and Ubiquitous Computing, pp. 1–14, 2017.

[21] S. Mayer, V. Schwind, R. Schweigert, and N. Henze,
“The Effect of Offset Correction and Cursor on Mid-
Air Pointing in Real and Virtual Environments,” Proc.
of the 2018 CHI, 2018.

[22] K. Nickel and R. Stiefelhagen, “Pointing Gesture
Recognition based on 3D-Tracking of Face , Hands and
Head Orientation Categories and Subject Descriptors,”
Proceedings of the 5th international conference on
Multimodal interfaces, pp. 140–146, 2003.

[23] S. Ueno, S. Naito, and T. Chen, “An efficient method
for human pointing estimation for robot interaction,”
in 2014 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, oct 2014, pp. 1545–1549.

[24] S. Mayer, K. Wolf, S. Schneegass, and N. Henze,
“Modeling Distant Pointing for Compensating System-
atic Displacements,” in Proc. of the ACM CHI’15,
vol. 1, 2015, pp. 4165–4168.

[25] K. Kondo, G. Mizuno, and Y. Nakamura, “Analysis
of Human Pointing Behavior in Vision-based Pointing



Interface System - difference of two typical pointing
styles -,” IFAC-PapersOnLine, vol. 49, no. 19, pp. 367–
372, 2016.

[26] R. A. Bolt, ““Put-that-there”: Voice and Gesture at
the Graphics Interface,” Proceedings of the 7th annual
conference on Computer graphics and interactive tech-
niques - SIGGRAPH ’80, pp. 262–270, 1980.

[27] R. Jota, M. a. Nacenta, J. a. Jorge, S. Carpendale, and
S. Greenberg, “A Comparison of Ray Pointing Tech-
niques for Very Large Displays,” GI ’10 Proceedings
of Graphics Interface 2010, pp. 269–276, 2010.

[28] A. Cockburn, P. Quinn, C. Gutwin, G. Ramos, and
J. Looser, “Air pointing: Design and evaluation of
spatial target acquisition with and without visual feed-
back,” International Journal of Human Computer Stud-
ies, vol. 69, no. 6, pp. 401–414, 2011.

[29] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg,
“Drone-Augmented human vision: Exocentric control
for drones exploring hidden areas,” IEEE Transactions
on Visualization and Computer Graphics, vol. 24, no. 4,
pp. 1437–1446, 2018.

[30] J. S. Pierce, A. S. Forsberg, M. J. Conway, S. Hong,
R. C. Zeleznik, and M. R. Mine, “Image plane in-
teraction techniques in 3D immersive environments,”
Proceedings of the 1997 symposium on Interactive 3D
graphics - SI3D ’97, pp. 39–ff., 1997.

[31] M. Karrer, P. Schmuck, and M. Chli, “Cvi-
slam—collaborative visual-inertial slam,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp.
2762–2769, 2018.

[32] B. Gromov, L. Gambardella, and A. Giusti, “Robot
identification and localization with pointing gestures,”
in 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Oct. 2018, to appear.

[33] Mbientlab official web-page. https://mbientlab.com/.
[34] Bitcraze, “The crazyflie nano quadcopter,” https://

bitcraze.io.
[35] R. Lowry. Concepts and applications of inferential

statistics. http://vassarstats.net/textbook/. [Online; ac-
cessed: 2019-08-26].

[36] F. Wilcoxon, “Individual comparisons by ranking meth-
ods,” Biometrics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

https://mbientlab.com/
https://bitcraze.io
https://bitcraze.io
http://vassarstats.net/textbook/

	Introduction
	Related Work
	Model
	Target point
	Workspace shapes

	Implementation
	Gesture sensing
	Workspace switching
	Flying arena and quadrotor control
	Human parameters

	Experiments
	Setup
	Data collection

	Results
	Discussion

	Conclusions

