Examples#
navground.learning.examples
Corridor#
The environment of Corridor with obstacle.
Crossing#
The single and multi-agent environments of Crossing.
- get_env(flat: bool = True, use_acceleration_action: bool = True, multi_agent: bool = False, **kwargs: Any) → Env[dict[str, ndarray[Any, dtype[Any]]] | ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] | ParallelEnv[int, dict[str, ndarray[Any, dtype[Any]]] | ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]]#
Creates the an environment where 20 agents travel back and forth between way-points, crossing in the middle.
- Parameters:
- Returns:
A Parallel PettingZoo environment if multi_agent is set, else a Gymnasium environment.
- Return type:
Env[dict[str, ndarray[Any, dtype[Any]]] | ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]] | ParallelEnv[int, dict[str, ndarray[Any, dtype[Any]]] | ndarray[Any, dtype[Any]], ndarray[Any, dtype[Any]]]